loading...
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

\(=lim_{x\rightarrow0}\left(\dfrac{5\cdot x\cdot\left(4x+2\right)}{5\cdot sin5x\cdot\left(\sqrt{4x^2+2x+1}+1\right)}-\dfrac{5\cdot x}{5\cdot sin5x\cdot\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}\right)\)\(lim_{x\rightarrow0}\dfrac{\sqrt{4x^2+2x+1}-\sqrt[3]{x+1}}{sin5x}=lim_{x\rightarrow0}(\dfrac{\sqrt{4x^2+2x+1}-1}{sin5x}-\dfrac{\sqrt[3]{x+1}-1}{sin5x})\)\(=lim_{x\rightarrow0}\left(\dfrac{1}{\dfrac{sin5x}{5x}}\cdot\left(\dfrac{4x+2}{(\sqrt{4x^2+2x+1}+1)\cdot5}-\dfrac{1}{5\cdot\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}\right)\right)\)(1)

chú ý : \(lim _{x\rightarrow0}\dfrac{1}{\dfrac{sin5x}{5x}}=\dfrac{1}{5}\) 

Hay (1)= \(\dfrac{1}{5}\cdot\left(\dfrac{2}{2\cdot5}-\dfrac{1}{5\cdot3}\right)=\dfrac{2}{75}\)

Đặt A'B'=a

ΔA'B'C' vuông tại B'

=>\(\left(A^{\prime}B^{\prime}\right)^2+\left(B^{\prime}C^{\prime}\right)^2=\left(A^{\prime}C^{\prime}\right)^2\)

=>\(\left(A^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)

=>\(A^{\prime}C^{\prime}=a\sqrt2\) (1)

Vì ABCD.A'B'C'D' là hình lập phương

nên A'A//C'C và A'A=C'C

=>A'ACC' là hình bình hành

=>A'C'//AC

=>\(\hat{AC;A^{\prime}D}=\hat{A^{\prime}C^{\prime};A^{\prime}D}=\hat{DA^{\prime}C^{\prime}}\)

A'B'C'D' là hình vuông

=>A'D'=D'C'=C'B'=A'B'=a

Vì ABCD.A'B'C'D' là hình lập phương

nên A'B'BA là hình vuông

=>A'A=A'B'=a

Vì ABCD.A'B'C'D' là hình lập phương

nên D'D=A'A=a

ΔA'D'D vuông tại D'

=>\(\left(D^{\prime}A^{\prime}\right)^2+\left(D^{\prime}D\right)^2=\left(A^{\prime}D\right)^2\)

=>\(\left(A^{\prime}D\right)^2=a^2+a^2=2a^2\)

=>\(A^{\prime}D=a\sqrt2\)

D'C'CD là hình vuông

=>\(\left(DC^{\prime}\right)^2=\left(D^{\prime}D\right)^2+\left(D^{\prime}C^{\prime}\right)^2=a^2+a^2=2a^2\)

=>\(DC^{\prime}=a\sqrt2\)

=>DC'=DA'=A'C'

=>ΔDA'C' đều

=>\(\hat{DA^{\prime}C^{\prime}}=60^0\)

=>\(\hat{AC;A^{\prime}D}=60^0\)

=>Chọn C

Câu 1: \(\frac{\pi}{2}<\alpha,\beta<\pi\)

=>\(\sin\alpha>0;\sin\beta>0;cos\alpha<0;cos\beta<0\)

\(\sin^2\alpha+cos^2\alpha=1\)

=>\(cos^2\alpha=1-\sin^2\alpha=1-\left(\frac13\right)^2=\frac89\)

\(cos\alpha<0\)

nên \(cos\alpha=-\frac{2\sqrt2}{3}\)

Ta có: \(\sin^2\beta+cos^2\beta=1\)

=>\(\sin^2\beta=1-\left(-\frac23\right)^2=1-\frac49=\frac59\)

\(\sin\beta>0\)

nên \(\sin\beta=\frac{\sqrt5}{3}\)

\(\sin\left(\alpha+\beta\right)=\sin\alpha\cdot cos\beta+cos\alpha\cdot\sin\beta\)

\(=\frac13\cdot\frac{-2}{3}+\frac{-2\sqrt2}{3}\cdot\frac{\sqrt5}{3}=\frac{-\sqrt2-2\sqrt{10}}{9}\)

Câu 2:

\(P=cos\left(a+b\right)\cdot cos\left(a-b\right)\)

\(=\frac12\cdot\left\lbrack cos\left(a+b+a-b\right)+cos\left(a+b-a+b\right)\right\rbrack=\frac12\cdot\left\lbrack cos2a+cos2b\right\rbrack\)

\(=\frac12\cdot\left\lbrack2\cdot cos^2a-1+2\cdot cos^2b-1\right\rbrack=cos^2a+cos^2b-1\)

\(=\left(\frac13\right)^2+\left(\frac14\right)^2-1=\frac19+\frac{1}{16}-1=\frac{25}{144}-1=-\frac{119}{144}\)



Em chưa học ạ

 

9 tháng 1 2024

Hệ số biến dạng theo mỗi trục đo O'x', O'y', O'z' lần lượt là:

p=O'A'OA=22=1�=�'�'��=22=1;

q=O'B'OB=13�=�'�'��=13;

r=O'C'OC=46=23�=�'�'��=46=23.

bạn hãy ghi rõ câu hỏi ạ

14 tháng 9

ko


14 tháng 9

2315

31 tháng 10 2016

giúp mình với !!!!