K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)}{x-3}=\lim\limits_{x\rightarrow3}\frac{2\left(\sqrt{x+1}-2\right)\left(\sqrt{x+1}+2\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}=\lim\limits_{x\rightarrow3}\frac{2\left(x-3\right)}{\left(x-3\right)\left(\sqrt{x+1}+2\right)}\)

\(=\lim\limits_{x\rightarrow3}\frac{2}{\sqrt{x+1}+2}=\frac{2}{4}=\frac{1}{2}\)

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{x^2+1}+x}{3x+5}=\lim\limits_{x\rightarrow+\infty}\frac{\sqrt{1+\frac{1}{x^2}}+1}{3+\frac{5}{x}}=\frac{2}{3}\)

NV
17 tháng 5 2020

Đáp án A, khi \(x\rightarrow1\) thì \(x-2< 0\) nên biểu thức không xác định

\(\Rightarrow\) Giới hạn đã cho ko tồn tại

NV
13 tháng 5 2020

\(\lim\limits_{x\rightarrow1}\frac{x^3-x}{2x+1}=\frac{0}{3}=0\)

NV
16 tháng 3 2020

\(a=\lim\limits_{x\rightarrow0}\frac{x^2}{x\left(\sqrt{1+x^2}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x}{\sqrt{1+x^2}+1}=\frac{0}{2}=0\)

\(b=\lim\limits_{x\rightarrow1}\frac{\sqrt[3]{x+7}-2+2-\sqrt{5-x^2}}{x-1}=\lim\limits_{x\rightarrow1}\frac{\frac{x-1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{\left(x-1\right)\left(x+1\right)}{2+\sqrt{5-x^2}}}{x-1}\)

\(=\lim\limits_{x\rightarrow1}\left(\frac{1}{\sqrt[3]{\left(x+7\right)^2}+2\sqrt[3]{x+7}+4}+\frac{x+1}{2+\sqrt{5-x^2}}\right)=\frac{1}{12}+\frac{1}{2}=\frac{7}{12}\)

\(c=\lim\limits_{x\rightarrow0}\frac{2x}{x\left(\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}\right)}=\lim\limits_{x\rightarrow0}\frac{2}{\sqrt[3]{\left(1+x\right)^2}+\sqrt[3]{\left(1+x\right)\left(1-x\right)}+\sqrt[3]{\left(1-x\right)^2}}=\frac{2}{3}\)

\(d=\frac{\sqrt[3]{6}}{0}=+\infty\)

24 tháng 4 2020

= gì vậy ạ

NV
22 tháng 4 2020

Nếu

\(\lim\limits_{x\rightarrow+\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow+\infty}x\left(\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}-2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)

\(=+\infty.\left(1-2\right)=-\infty\)

Nếu:

\(\lim\limits_{x\rightarrow-\infty}\left(\sqrt{x^2+x+1}-2\sqrt{x^2-x+1}\right)=\lim\limits_{x\rightarrow-\infty}x\left(-\sqrt{1+\frac{1}{x}+\frac{1}{x^2}}+2\sqrt{1-\frac{1}{x}+\frac{1}{x^2}}\right)\)

\(=-\infty.\left(-1+2\right)=-\infty\)

NV
25 tháng 2 2020

\(=\lim\limits_{x\rightarrow0}\frac{x^3}{x\left(x+1\right)\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}=\lim\limits_{x\rightarrow0}\frac{x^2}{\left(x+1\right)\left(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1\right)}=\frac{0}{1.3}=0\)