Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{2}{x+1}-\frac{1}{x-2}=\frac{3x-11}{\left(x+1\right).\left(x-2\right)}\) Đk : x \(\ne-1\) ; x \(\ne2\)
\(\Leftrightarrow\frac{2.\left(x-2\right)}{\left(x+1\right).\left(x-2\right)}-\frac{1.\left(x+1\right)}{\left(x+1\right).\left(x-2\right)}=3x-11\)
\(\Leftrightarrow2x-4-x-1=3x-11\)
\(\Leftrightarrow2x-3x-x=-11+4+1\)
\(\Leftrightarrow-2x=-6\)
\(\Leftrightarrow x=3\)
Vậy S = \(\left\{3\right\}\)
\(4x\left(x-1\right)+5\left(1-x\right)=0\)
\(\Leftrightarrow4x\left(x-1\right)-5\left(x-1\right)=0\)
\(\Leftrightarrow\left(4x-5\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x-5=0\\x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{4}\\x=1\end{cases}}\)
a: =(x-3)(2x+5)
b: \(\Leftrightarrow\left(x-2\right)\left(x+2+3-2x\right)=0\)
=>(x-2)(5-x)=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
d) \(PT\Leftrightarrow x\left(2x-7\right)-4\left(x-7\right)=0\)
\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-7=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{7}{2};4\right\}\)
e) \(PT\Leftrightarrow\left(2x-5-x-2\right)\left(2x-5+x+2\right)=0\)
\(\Leftrightarrow\left(x-7\right)\left(3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-7=0\\3x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{7;1\right\}\)
f) \(PT\Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy: \(S=\left\{1;3\right\}\)
a); b) Do tích = 0
=> Từng thừa số = 0 và ta nhận xét: \(x^2+2;x^2+3>0\)
=> a) \(\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)
và câu b) \(\orbr{\begin{cases}x=\frac{1}{2}\\x=5\end{cases}}\)
a; *x-1=0 <=>x=1
*2x+5=0 <=>x=-2,5
*x2+2=0 <=> ko có x
b; tương tự a
a) \(\left(x^2+2x+2\right)\left(x^2+2x+3\right)=0\)
<=> \(\orbr{\begin{cases}x^2+2x+2=0\\x^2+2x+3=0\end{cases}}\)
<=> \(\orbr{\begin{cases}\left(x+1\right)^2+1=0\left(vl\right)\\\left(x+1\right)^2+2=0\left(vl\right)\end{cases}}\)
=> pt vô nghiệm
b) \(\left(x+3\right)\left(x-3\right)\left(x^2-11\right)+3=2\)
<=> \(\left(x^2-9\right)\left(x^2-11\right)+1=0\)
<=> \(\left(x^2-9\right)^2-2\left(x^2-9\right)+1=0\)
<=> \(\left(x^2-9-1\right)^2=0\)
<=> \(x^2-10=0\)
<=> \(x=\pm\sqrt{10}\)
c) \(\left(x+3\right)^4+\left(x+5\right)^4=2\)
<=> \(\left(x+4-1\right)^4+\left(x+4+1\right)^4=2\)
Đặt x + 4 = a
<=> \(\left(a-1\right)^4+\left(a+1\right)^4=2\)
<=> \(a^4-4a^3+6a^2-4a+1+a^4+4a^3+6a^2+4a+1=2\)
<=> \(a^4+12a^2=0\)
<=> \(a^2\left(a^2+12\right)=0\)
<=> a = 0 (vì a2 + 12 > 0)
Vậy S = {0}
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=5\\x=-3\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{5}\\x=\sqrt{5}\\x=-3\end{matrix}\right.\)
\(=>\left[{}\begin{matrix}x^2-5=0\\x+3=0\end{matrix}\right.< =>\left[{}\begin{matrix}x=\pm\sqrt{5}\\x=-3\end{matrix}\right.\)
vậy.....