Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{3}{1-x}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\left(x\ne1;x\ne-2\right)\)
\(< =>\dfrac{-3}{x-1}-\dfrac{2}{x+2}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)
\(< =>\dfrac{-3\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}-\dfrac{2\left(x-1\right)}{\left(x+2\right)\left(x-1\right)}=\dfrac{x+8}{\left(x-1\right)\left(x+2\right)}\)
suy ra
`-3(x+2)-2(x-1)=x+8`
`<=>-3x-6-2x+2=x+8`
`<=>-3x-2x-x=8+6-2`
`<=>-6x=12`
`<=>x=-2(ktmđk)`
Vậy phương trình vô nghiệm
=>-3(x+2)-2x+2=x+8
=>-3x-6-2x+2=x+8
=>-5x-4=x+8
=>-6x=12
=>x=-2(loại)
Em coi lại đề bài, \(8\left(x+\dfrac{1}{x}\right)\) hay \(8\left(x+\dfrac{1}{x}\right)^2\) nhỉ?
Câu này tớ giải hơn 10 lần rồi cậu ( ko xàm :)
\(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
\(\Leftrightarrow\left(\frac{x+2}{98}+1\right)+\left(\frac{x+4}{96}+1\right)=\left(\frac{x+6}{94}+1\right)+\left(\frac{x+8}{92}+1\right)\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
Do đó \(x+100=0\Leftrightarrow x=-100\)
Vậy pt có nghiệm : x=-100
Ta có : \(\frac{x+2}{98}+\frac{x+4}{96}=\frac{x+6}{94}+\frac{x+8}{92}\)
=> \(\frac{x+2}{98}+1+\frac{x+4}{96}+1=\frac{x+6}{94}+1+\frac{x+8}{92}+1\)
=> \(\frac{x+100}{98}+\frac{x+100}{96}=\frac{x+100}{94}+\frac{x+100}{92}\)
=> \(\frac{x+100}{98}+\frac{x+100}{96}-\frac{x+100}{94}-\frac{x+100}{92}=0\)
=> \(\left(x+100\right)\left(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\right)=0\)
Vì \(\frac{1}{98}+\frac{1}{96}-\frac{1}{94}-\frac{1}{92}\ne0\)
=> x + 100 = 0
=> x = - 100
Vậy x = - 100
ĐKXĐ: \(x\notin\left\{0;2\right\}\)
Ta có: \(\dfrac{x}{x-2}+\dfrac{x+2}{x}>2\)
\(\Leftrightarrow\dfrac{x^2}{x\left(x-2\right)}+\dfrac{\left(x-2\right)\left(x+2\right)}{x\left(x-2\right)}-\dfrac{2x\left(x-2\right)}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\dfrac{x^2+x^2-4-2x^2+4x}{x\left(x-2\right)}>0\)
\(\Leftrightarrow\dfrac{4x-4}{x\left(x-2\right)}>0\)
Trường hợp 1:
\(\left\{{}\begin{matrix}4x-4>0\\x\left(x-2\right)>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x>4\\\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x>1\\\left[{}\begin{matrix}x>2\\x< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow x>2\)
Kết hợp ĐKXĐ, ta được: x>2
Trường hợp 2:
\(\left\{{}\begin{matrix}4x-4< 0\\x\left(x-2\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x< 4\\0< x< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x< 1\\0< x< 2\end{matrix}\right.\Leftrightarrow0< x< 1\)
Kết hợp ĐKXĐ, ta được: 0<x<1
Vậy: S={x|\(\left[{}\begin{matrix}x>2\\0< x< 1\end{matrix}\right.\)}
\(\Leftrightarrow\dfrac{2}{-x^2+6x-8}=\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\\ \Leftrightarrow\left\{{}\begin{matrix}2=\left(-x^2+6x-8\right)\left(\dfrac{x-1}{x-2}+\dfrac{x+3}{x-4}\right)\\-x^2+6x-8\ne0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2=-2x^2+4x+2\\-x^2+6x-8\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=2\\-x^2+6x-8\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x=0\\-x^2+6x-8\ne0\end{matrix}\right.\\\left\{{}\begin{matrix}x=2\\-x^2+6x-8\ne\end{matrix}\right.\end{matrix}\right.\\\Rightarrow x=0\)
Điều kiện: \(x\ne2\)
Pt: \(\Leftrightarrow2^{\dfrac{3x}{x+2}}=2^2.3^{4-x}\Leftrightarrow3^{\dfrac{x-4}{x+2}}=3^{4-x}\)
\(\Leftrightarrow\dfrac{x-4}{x+2}\log_32=4-x\)
\(\Leftrightarrow\left(x-4\right)\left(x+2+\log_32\right)=0\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-2-\log_32\end{matrix}\right.\)