\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2017

\(\frac{x^2}{2}+\frac{18}{x^2}=13\left(\frac{x}{2}-\frac{3}{x}\right)\)

\(\Leftrightarrow\frac{x^2}{2}+\frac{18}{x^2}-\frac{13x}{2}+\frac{39}{x}=0\)

\(\Leftrightarrow\frac{x^4-13x^3+78x+36}{2x^2}=0\)

\(\Leftrightarrow x^4-13x^3+78x+36=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)\left(x^2-12x-6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x^2-12x-6=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2;x=3\\x=\frac{12\pm\sqrt{168}}{2}\end{cases}}\)

13 tháng 8 2016

chứng minh hay tìm bạn

13 tháng 8 2016

Tìm x bạn

23 tháng 7 2016

2) đặt \(x^2+x+1=t\left(t>0\right)\)   ==> \(x^2+x+2=t+1\)

nên pt trên trở thành 

\(\left(\frac{1}{t}\right)^2+\left(\frac{1}{t+1}\right)^2=\frac{13}{36}\)

<=> \(\frac{1}{t^2}+\frac{1}{t^2+2t+1}=\frac{13}{36}\)

<=> \(13t^4+26t^3-59t^2-72t-36=0\)

<=> \(13t^4-26t^3+52t^3-104t^2+45t^2-90t+18t-36=0\)

<=> \(13t^3\left(t-2\right)+52t^2\left(t-2\right)+45t\left(t-2\right)+18\left(t-2\right)=0\)

<=>\(\left(t-2\right)\left(13t^3+52t^2+45t+18\right)=0\)

<=> \(\left(t-2\right)\left(t+3\right)\left(13t^2+13t+6\right)=0\)

<=> \(\orbr{\begin{cases}t=2\left(tmdk\right)\\t=-3\left(ktmdk\right)\end{cases}}\)

đến đây bạn thay vào làm nốt nhá

23 tháng 7 2016

1.

Đặt \(a=\frac{x\left(5-x\right)}{x+1};b=x+\frac{5-x}{x+1}\)

Ta cần giải pt : \(a.b=6\)(1)

Ta có: \(a+b=\frac{x\left(5-x\right)}{x+1}+x+\frac{5-x}{x+1}=\frac{5x-x^2+x^2+x+5-x}{x+1}=5\)

\(\Rightarrow a=5-b\)

Thế \(a=5-b\)vào (1)

\(\Rightarrow\left(5-b\right)b=6\)

\(\Leftrightarrow b^2-5b+6=0\)

\(\Leftrightarrow\left(b-2\right)\left(b-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}b=2\\b=3\end{cases}\Leftrightarrow\orbr{\begin{cases}x+\frac{5-x}{x+1}=2\\x+\frac{5-x}{x+1}=3\end{cases}}}\)

Giải 2 pt trên, ta có nghiệm : \(x=1\)