Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left\{{}\begin{matrix}x^2+2xy+3y^2=9\\2x^2+2xy+y^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x+y\right)^2+2y^2=9\\\left(x+y\right)^2+x^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2y^2-x^2=9\\\left(x+y\right)^2+x^2=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2=2y^2-9\\2y^2-9+2y\sqrt{2y^2-9}+y^2+2y^2-9=2\left(\circledast\right)\end{matrix}\right.\)
giải phương trình \(\left(\circledast\right)\)
\(\Leftrightarrow5y^2-20+2y\sqrt{2y^2-9}=0\)
giải phương trình ta tìm được y, thay vào để tìm x
P/s : Tớ biết đây không phải cách tối ưu nhất đâu, thông cảm nhé :_>
1) Cộng vế theo vế ta được
\(2x^2+3xy+y^2-7x-5y+6=0\)
\((x+y-2)(2x+y-3)=0\)
Thay vào phương trình giải bình thường
2) Nhận thấy \(y=0\)không là nghiệm của hpt trên.Vì thế nhân cả 2 vế của (2) cho 18y ta được:\(72x^2y^{2}+108xy=18y^3\) (3)
Lấy (1) trừ (3) ta được:\(8x^3y^3-72x^2y^{2}-108xy+27=0
\)
Đến đây đặt \(a=xy\) giải bình thường
bạn có cách nào để phân tích đa tử nhanh như ở câu a k ạ
có pt (1) \(\Leftrightarrow\left(x^2+xy\right)^2=2x+9\Leftrightarrow\left(6x+6\right)^2=2x+9\)
đây là pt bậc 2 thì dễ rồi nhá !
\(x^2-2-2\sqrt{4x-7}=0\)
\(\Leftrightarrow\left(4x-7-2\sqrt{4x-7}+1\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(\sqrt{4x-7}-1\right)^2+\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{4x-7}-1=0\\x-2=0\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(4x^2-5x+1+2\sqrt{x-1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x-1\right)+2\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}\left[\left(4x-1\right)\sqrt{x-1}+2\right]=0\)
\(\Rightarrow x=1\)
. . .
\(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
\(\Leftrightarrow\sqrt{\left(x-2\right)^2}+\sqrt{\left(x-3\right)^2}=1\)
\(\Leftrightarrow\left|x-2\right|+\left|x-3\right|=1\)
\(VT=\left|x-2\right|+\left|3-x\right|\ge\left|x-2+3-x\right|=1=VP\)
Dấu "=" xảy ra khi \(\left(x-2\right)\left(3-x\right)\ge0\)
Đến đây lập bảng xét dấu
. . .
\(x^2-x+2=2\sqrt{x^2-x+1}\)
\(\Leftrightarrow\left(\sqrt{x^2-x+1}-1\right)^2=0\)
Tự làm tiếp nhé.
\(\sqrt{3x+1}-\sqrt{6-x}+3x^2-14x-8=0\)
\(\Leftrightarrow\left(\sqrt{3x+1}-4\right)+\left(1-\sqrt{6-x}\right)+\left(3x^2-14-5\right)=0\)
\(\Leftrightarrow\dfrac{3x+1-16}{\sqrt{3x+1}+4}+\dfrac{1-6+x}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x-5\right)}{\sqrt{3x+1}+4}+\dfrac{x-5}{1+\sqrt{6-x}}+\left(x-5\right)\left(3x+1\right)=0\)
\(\Leftrightarrow\left(\dfrac{3}{\sqrt{3x+1}+4}+\dfrac{1}{1+\sqrt{6-x}}+3x+1\right)\left(x-5\right)=0\)
\(\Rightarrow x=5\)
. . .
\(\sqrt{2x^2-4x+5}-x+4=0\)
\(\Leftrightarrow\sqrt{2x^2-4x+5}=x-4\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-4\ge0\\2x^2-4x+5=x^2-8x+16\end{matrix}\right.\)
Tự làm tiếp nhé.
. . .
\(\sqrt{2x+3}+\sqrt{x-1}=\sqrt{x+6}\)
\(\Leftrightarrow\sqrt{2x+3}=\sqrt{x+6}-\sqrt{x-1}\)
\(\Leftrightarrow2x+3=x+6-2\sqrt{\left(x+6\right)\left(x-1\right)}+x-1\)
\(\Leftrightarrow2\sqrt{x^2+5x-6}=2\)
\(\Leftrightarrow x^2+5x-6=1\)
Tự làm tiếp nhé.
. . .
\(x+y+\dfrac{1}{2}=\sqrt{x}+\sqrt{y}\)
\(\Leftrightarrow\left(x-\sqrt{x}+\dfrac{1}{4}\right)+\left(y-\sqrt{y}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\left(\sqrt{y}-\dfrac{1}{2}\right)^2=0\)
Tự làm tiếp nhé.
Câu 1:
\(\Leftrightarrow\left\{{}\begin{matrix}x^3-y^3=3y^2+9\\3x^2+3y^2=3x+12y\end{matrix}\right.\)
\(\Rightarrow x^3-y^3-3x^2-3y^2=3y^2+9-3x-12y\)
\(\Leftrightarrow x^3-3x^2+3x-1=y^3+6y^2+12y+8\)
\(\Leftrightarrow\left(x-1\right)^3=\left(y+2\right)^3\)
\(\Leftrightarrow x-1=y+2\Rightarrow x=y+3\)
Thay vào pt dưới:
\(\left(y+3\right)^2+y^2=y+3-4y\)
\(\Leftrightarrow2y^2+9y+6=0\) \(\Rightarrow...\)
Câu 2:
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+2xy+2y^2+3x=0\\2xy+2y^2+6y+2=0\end{matrix}\right.\)
\(\Leftrightarrow x^2+4xy+4y^2+3x+6y+2=0\)
\(\Leftrightarrow\left(x+2y\right)^2+3\left(x+2y\right)+2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+2y=-1\\x+2y=-2\end{matrix}\right.\)
TH1: \(x+2y=-1\Rightarrow x=-2y-1\) thay vào pt dưới:
\(\left(-2y-1\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2+2y+1=0\Rightarrow...\)
TH2: \(x+2y=-2\Rightarrow x=-2y-2\) thay vào pt dưới:
\(\left(-2y-2\right)y+y^2+3y+1=0\)
\(\Leftrightarrow-y^2-y+1=0\Rightarrow...\)
\(\hept{\begin{cases}x^4+2x^3y+x^2y^2=2x+9\\x^2+2xy=6x+6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x^2+xy\right)^2=2x+9\\2\left(x^2+xy\right)=6x+x^2+6\end{cases}}\)
Đặt \(x^2+xy=a\)
\(\Rightarrow\hept{\begin{cases}a^2=2x+9\\2a=x^2+6x+6\end{cases}}\)
Làm nốt