Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) Ta có: \(\left(x^2-1\right)^2-x\left(x^2-1\right)-2x^2=0\)
\(\Leftrightarrow\left[\left(x^2-1\right)^2+x\left(x^2-1\right)\right]-\left[2x\left(x^2-1\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2+x-1\right)-2x\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left(x^2-2x-1\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2-2x-1=0\\x^2+x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=2\\\left(x+\frac{1}{2}\right)^2=\frac{5}{4}\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=\pm\sqrt{2}\\x+\frac{1}{2}=\pm\frac{\sqrt{5}}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x=1\pm\sqrt{2}\\x=-\frac{1\pm\sqrt{5}}{2}\end{cases}}\)
2) Ta có: \(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=0\)
\(\Leftrightarrow\left[\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)\right]+\left[2x\left(x^2+4x+8\right)+2x^2\right]=0\)
\(\Leftrightarrow\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x^2+6x+8\right)\left(x^2+5x+8\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)=0\)
Vì \(x^2+5x+8=\left(x^2+5x+\frac{25}{4}\right)+\frac{7}{4}=\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x+4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=-2\\x=-4\end{cases}}\)
Vậy x = -2 hoặc x = -4
b: =>(x+5)(x-3)=0
=>x=3 hoặc x=-5
c: \(\Leftrightarrow x\left(x^2-4x+5\right)=0\)
=>x=0
d: \(\Leftrightarrow2\cdot2^x-10\cdot2^x=-16\)
\(\Leftrightarrow-8\cdot2^x=-16\)
\(\Leftrightarrow2^x=2\)
hay x=1
a, Phân tích vế trái bằng \(\left(x-2006\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x-2006\right)\left(x+1\right)=0\Rightarrow x_1;x_2=2006\)
c, Xét phương trình với 4 khoảng sau :
\(x< 2;2\le x< 3;3\le x< 4;x\ge4\)
Rồi suy ra nghiệm của phương trình là : \(x=1;x=5,5\)
a.\(x^2-2005x-2006=0\)
\(\Leftrightarrow\left(x+1\right)\left(x-2006\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2006\end{cases}}\)
b.Ta co:\(|x-2|+|x+3|+|2x-8|\ge|2x+1|+|8-2x|\ge9|\)
Dau '=' xay ra khi \(2\le x\le4\)
\(x^2-5x+6=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2-2x-3x+6=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x-2\right)-3\cdot\left(x+2\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-3\right)\cdot\left(x-2\right)=0\Rightarrow x\in\left(2,3\right)\)
\(x^2-7x+12=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2-3x-4x+12=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x-3\right)-4\left(x-3\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-4\right)\cdot\left(x-3\right)=0\Rightarrow x\in\left(3,4\right)\)
\(x^2+x-20=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x^2+5x-4x-20=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ x\cdot\left(x+5\right)-4\cdot\left(x+5\right)=0\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \left(x-4\right)\cdot\left(x+5\right)=0\Rightarrow x\in\left(4,-5\right)\)
câu 4 mk chịu
\(1.x^2-5x+6=0\\ x^2-2x-3x+6=0\\ \left(x^2-2x\right)+\left(-3x+6\right)=0\\ x\left(x-2\right)-3\left(x-2\right)=0\\ \left(x-2\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)
\(2.x^2-7x+12=0\\ x^2-3x-4x+12=0\\ \left(x^2-4x\right)+\left(-3x+12\right)=0\\ x\left(x-4\right)-3\left(x-4\right)=0\\ \left(x-4\right)\left(x-3\right)=0\\ \left[{}\begin{matrix}x-4=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=3\end{matrix}\right.\)
\(3.x^2+x-20=0\\ x^2-4x+5x-20=0\\ \left(x^2-4x\right)+\left(5x-20\right)=0\\ x\left(x-4\right)+5\left(x-4\right)=0\\ \left(x-4\right)\left(x+5\right)=0\\ \left[{}\begin{matrix}x-4=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-5\end{matrix}\right.\)
câu 4 mik nghĩ là đề sai
1) (x-4)2-36=0
⇔ (x-4)2=36=62
⇔\(\left\{{}\begin{matrix}x-4=6\Rightarrow x=10\\x-4=-6\Rightarrow x=2\end{matrix}\right.\)
2) (x+8)2 = 121 = 112
⇔ \(\left\{{}\begin{matrix}x+8=11\Rightarrow x=3\\x+8=-11\Rightarrow x=-19\end{matrix}\right.\)
3) x2 + 8x + 16 = 0
⇔ (x+4)2=0
⇔ x+4 = 0 ⇒ x = -4
Bài 1 :
\(x^2\left(x-3\right)-4x+12=0\)
\(x^2\left(x-3\right)-4\left(x-3\right)=0\)
\(\left(x-3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=\left\{\pm2\right\}\end{cases}}}\)
Bài 2 :
\(x-1-x^2\)
\(=-\left(x^2-x+1\right)\)
\(=-\left[x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\)
Vì \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge0\forall x\)
\(\Rightarrow-\left[\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\right]\le0\forall x\left(đpcm\right)\)
\(\Leftrightarrow\dfrac{3x}{x-2}-\dfrac{x}{x+5}-\dfrac{2x^2}{\left(x-2\right)\left(x+5\right)}=0\)
\(\Leftrightarrow3x^2+15x-x^2+2x-2x^2=0\)
=>17x=0
hay x=0
x2-2 = 0+4
x2-2 = 4
x2 = 4+2
x2 = 6
=> ko co so nao thoa man de bai
Ta có:
\(x^2-2-4=0\)
\(\Rightarrow x^2=0+2+4=6\)
\(\Rightarrow x=\sqrt{6}\)