Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
x + x2 + x3 + x4 = y + y2 + y3 + y4
<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0
<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]
<=> (x - y)(2 + 2x + 2y + xy)
\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)
Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp
1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)
Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành
\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)
\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)
PT này vô nghiệm vậy pt ban đầu vô nghiệm
Đặt \(|x-1|=z\ge0\)
Ta có hệ:\(\hept{\begin{cases}z+|y-5|=1\\z-y=-5\end{cases}}\)
\(-TH1:\)
Nếu \(y< 5\) ta có: \(\hept{\begin{cases}z-y=-4\\z-y=-5\end{cases}}\)
Hệ này vô nghiệm
\(-TH2:\)
Nếu \(y\ge5\) ta có:\(\hept{\begin{cases}z+y=6\\z-y=-5\end{cases}}\)
Giải hệ này ta có: \(\hept{\begin{cases}z=\frac{1}{2}\\y=\frac{11}{2}\end{cases}}\)
\(z=|x-1|=\frac{1}{2}\Rightarrow x-1=\pm\frac{1}{2}\)
Do đó: \(x=\frac{3}{2}\)hoặc\(x=\frac{1}{2}\)
Vậy hệ đã cho có hai nghiệm là \(\left(\frac{3}{2};\frac{11}{2}\right)\)và\(\left(\frac{1}{2};\frac{11}{2}\right)\)