\(\hept{\begin{cases}|x-1|+|y-5|=1\\|x-1|-y=-5\end{cases}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2018

Đặt \(|x-1|=z\ge0\)

Ta có hệ:\(\hept{\begin{cases}z+|y-5|=1\\z-y=-5\end{cases}}\)

\(-TH1:\)

Nếu \(y< 5\) ta có: \(\hept{\begin{cases}z-y=-4\\z-y=-5\end{cases}}\)

Hệ này vô nghiệm

\(-TH2:\)

Nếu \(y\ge5\) ta có:\(\hept{\begin{cases}z+y=6\\z-y=-5\end{cases}}\)

Giải hệ này ta có: \(\hept{\begin{cases}z=\frac{1}{2}\\y=\frac{11}{2}\end{cases}}\)

\(z=|x-1|=\frac{1}{2}\Rightarrow x-1=\pm\frac{1}{2}\)

Do đó: \(x=\frac{3}{2}\)hoặc\(x=\frac{1}{2}\)

Vậy hệ đã cho có hai nghiệm là \(\left(\frac{3}{2};\frac{11}{2}\right)\)\(\left(\frac{1}{2};\frac{11}{2}\right)\)

1 tháng 11 2016

Ta có 

x + x2 + x3 + x4 = y + y2 + y3 + y4

<=> (x - y) + (x2 - y2) + (x3 - y2) + (x4 - y4) = 0

<=> (x - y)[1 + x + y + x2 + xy + y2 + (x2 + y2)(x + y)]

<=> (x - y)(2 + 2x + 2y + xy)

\(\Leftrightarrow\orbr{\begin{cases}x-y=0\\2+2x+2y+xy=0\end{cases}}\)

Tới đây bạn tự giải tiếp nhé. Tính không giải đâu mà thấy bạn nhờ nên mới giải tiếp 

1 tháng 11 2016

1/ \(\hept{\begin{cases}x+y+xy=5\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)\left(y+1\right)=6\\\left(x+1\right)^5+\left(y+1\right)^5=35\end{cases}}\)

Đặt \(\hept{\begin{cases}x+1=a\\y+1=b\end{cases}}\)thì hệ thành

\(\hept{\begin{cases}ab=6\\a^5+B^5=35\end{cases}}\)

\(\Rightarrow a^5+\frac{6^5}{a^5}=35\)

PT này vô nghiệm vậy pt ban đầu vô nghiệm

30 tháng 10 2017

chị ơi ko biết