Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) /2x/-/2,5/=/-7,5/
/2x/-(-2,5)=7,5
/2x/ =7,5+(-2,5)
/2x/ =5
2x=5 hoặc 2x= -5
x=5:2 x= -5:2
x=2,5 x= -2,5
Vậy x=2,5 hoặc x= -2,5
Trả lời
Bạn xem tại:
Câu hỏi của Mai Ngọc - Toán lớp 7 - Học toán với OnlineMath
c) Ta đã biết DA = DE (chứng minh trên) (1)
Trong tam giác EDC vuông tại E có DC đối diện đỉnh E
Suy ra DC là cạnh lớn nhất trong tam giác EDC
Hay DC > DE (2)
Từ (1) và (2) suy ra DC > AD hay AD < DC
d: Xét ΔABK và ΔCKB có
AB=CK
KB chung
AK=CB
Do đó: ΔABK=ΔCKB
6) \(\dfrac{8^6}{256}=\dfrac{\left(2^3\right)^6}{2^8}=\dfrac{2^{18}}{2^8}=2^{10}=1024\)
7) \(\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{4}\right)^{20}=\left(\dfrac{1}{2}\right)^{15}.\left[\left(\dfrac{1}{2}\right)^2\right]^{20}=\left(\dfrac{1}{2}\right)^{15}.\left(\dfrac{1}{2}\right)^{40}=\left(\dfrac{1}{2}\right)^{55}=\dfrac{1}{2^{55}}\)
8) \(\left(\dfrac{1}{9}\right)^{25}\div\left(\dfrac{1}{3}\right)^{30}=\left(\dfrac{1}{3}\right)^{50}\div\left(\dfrac{1}{3}\right)^{30}=\left(\dfrac{1}{3}\right)^{20}=\dfrac{1}{3^{20}}\)
9)\(\left(\dfrac{1}{16}\right)^3\div\left(\dfrac{1}{8}\right)^2=\left(\dfrac{1}{2}\right)^{12}\div\left(\dfrac{1}{2}\right)^6=\left(\dfrac{1}{2}\right)^6=\dfrac{1}{64}\)
10) \(\dfrac{27^2.8^5}{6^2.32^3}=\dfrac{3^6.2^{15}}{3^2.2^2.2^{15}}=\dfrac{3^4}{2^2}=\dfrac{81}{4}\)
Bài 4:
a) Xét ΔABD và ΔAED có
AB=AE(gt)
\(\widehat{BAD}=\widehat{EAD}\)(AD là tia phân giác của \(\widehat{BAC}\))
AD chung
Do đó: ΔABD=ΔAED(c-g-c)
b) Ta có: ΔABD=ΔAED(cmt)
nên \(\widehat{ABD}=\widehat{AED}\)(hai góc tương ứng)
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)(cmt)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: ΔABD=ΔAED(cmt)
nên BD=ED(hai cạnh tương ứng)
Xét ΔBDF và ΔEDC có
BD=ED(cmt)
\(\widehat{FBD}=\widehat{CED}\)(cmt)
BF=EC(gt)
Do đó: ΔBDF=ΔEDC(c-g-c)
⇒DF=DC(hai cạnh tương ứng)
c) Ta có: ΔBDF=ΔEDC(cmt)
nên \(\widehat{BDF}=\widehat{EDC}\)(hai góc tương ứng)
mà \(\widehat{BDF}+\widehat{CDF}=180^0\)(hai góc kề bù)
nên \(\widehat{EDC}+\widehat{FDC}=180^0\)
\(\Leftrightarrow\widehat{EDF}=180^0\)
hay E,D,F thẳng hàng(đpcm)
d) Ta có: AB+BF=AF(B nằm giữa A và F)
AE+EC=AC(E nằm giữa A và C)
mà AB=AE(gt)
và BF=EC(gt)
nên AF=AC
hay A nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(1)
Ta có: DF=DC(cmt)
nên D nằm trên đường trung trực của CF(Tính chất đường trung trực của một đoạn thẳng)(2)
Từ (1) và (2) suy ra AD là đường trung trực của CF
hay AD⊥FC(đpcm)
ghj đề ra lun ik r giải cho, chứ hìh khó thấy quá ak, với lại chữ cx ko nhìn ra
2
hình vẽ trên cho biết góc A1 =25 độ
góc ABC = 135 độ
góc C1 = 70 độ
chứng minh d1 song song với d2
Do đa thức A(x) có nghiệm là -3
\(\Leftrightarrow A\left(-3\right)=0\)
\(\Leftrightarrow a.\left(-3\right)^2+2.\left(-3\right)-3=0\)
\(\Leftrightarrow9a-9=0\)
\(\Leftrightarrow a=1\)
Vì AOB là góc bẹt => AOB =180*
Có BOC + COA=AOB
=>BOC=180-50=130*
b,Từ O kẻ 1 tia OM vuông góc vơi AB
Ta có BOD+DOM+MOC+COA=AOB
<=> 40* + DOC +50* = 180* (VÌ DOM+MOC=DOC)
=> DOC =90* hay OC vuông góc với OD