Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đề ( \(x\ne\pm1\))
>\(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}=\frac{4}{\left(x+1\right)\left(x-1\right)}\\ \Leftrightarrow\left(x+1\right)^2-\left(x-1\right)^2=4\\ \Leftrightarrow\left(x+1-x+1\right)\left(x+1+x-1\right)=4\\ \Leftrightarrow2.2x=4\Leftrightarrow x=1\left(kothỏa\right)\)
Vậy \(S=\varnothing\)
b) đề \(\left(x\ne-\frac{1}{2},\frac{1}{2}\right)\)
\(\frac{32x^2}{12\left(1-2x\right)\left(1+2x\right)}=\frac{-8x\left(1+2x\right)}{12\left(1-2x\right)\left(1+2x\right)}-\frac{3\left(1+8x\right)\left(1-2x\right)}{12\left(1-2x\right)\left(1+2x\right)}\\ \Leftrightarrow32x^2=-8x-16x^2-3-12x+48x^2\\ \Leftrightarrow20x+3=0\Leftrightarrow x=\frac{20}{3}\left(thỏadk\right)\)
Vậy \(S=\left\{\frac{20}{3}\right\}\)
Bài 2: \(a,\frac{7x-1}{2x^2+6x}=\frac{7x-1}{2x\left(x+3\right)}=\frac{\left(7x-1\right)\left(x-3\right)}{2x\left(x+3\right)\left(x-3\right)}\)
\(\frac{5-3x}{x^2-9}=\frac{5-3x}{\left(x-3\right)\left(x+3\right)}=\frac{\left(5-3x\right)2x}{2x\left(x-3\right)\left(x+3\right)}\)
\(b,\frac{x+1}{x-x^2}=\frac{x+1}{x\left(1-x\right)}=-\frac{x+1}{x\left(x+1\right)}=-\frac{2\left(x-1\right)\left(x+1\right)}{2x\left(x-1\right)^2}\)
\(\frac{x+2}{2-4x+2x^2}=\frac{x+2}{2\left(x-1\right)^2}=\frac{2x\left(x+2\right)}{2x\left(x-1\right)^2}\)
\(c,\frac{4x^2-3x+5}{x^3-1}=\frac{4x^2-3x+5}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{2x}{x^2+x+1}=\frac{2x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(\frac{6}{x-1}=\frac{6\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(d,\frac{7}{5x}=\frac{7.2\left(2y-x\right)\left(2y+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{4}{x-2y}=-\frac{4}{2y-x}=-\frac{4.2.5x\left(2x+x\right)}{2.5x\left(2y-x\right)\left(2y+x\right)}\)
\(\frac{x-y}{8y^2-2x^2}=\frac{x-y}{2\left(4y^2-x^2\right)}=\frac{x-y}{2\left(2y-x\right)\left(2y+x\right)}=\frac{5x\left(x-y\right)}{2.5x.\left(2y-x\right)\left(2y+x\right)}\)
f/ ĐKXĐ: x khác 0
\(\Leftrightarrow\frac{1}{x}+2=2x^2+x+4+\frac{2}{x}\)
\(\Leftrightarrow2x^2+x+2+\frac{1}{x}=0\)
\(\Leftrightarrow x\left(2x+1+\frac{2}{x}+\frac{1}{x^2}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\2x+1+\frac{2x+1}{x^2}=0\end{matrix}\right.\)
\(\Rightarrow\left(2x+1\right)\left(1+\frac{1}{x^2}\right)=0\Rightarrow x=-\frac{1}{2}\)( vì 1+1/x^2>0)
a/\(\Leftrightarrow\frac{x+4}{\left(x-1\right)\left(x-2\right)}+\frac{x+1}{\left(x-1\right)\left(x-3\right)}=\frac{2x+5}{\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow\frac{x+4}{\left(x-1\right)\left(x-2\right)}-\frac{x+4}{\left(x-1\right)\left(x-3\right)}=0\)
\(\Leftrightarrow\left(x+4\right)\left(\frac{1}{\left(x-1\right)\left(x-2\right)}-\frac{1}{\left(x-1\right)\left(x-3\right)}\right)=0\)
\(\Rightarrow x=-4\)