Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
3x-2=2x+3
=> (3x-2)-(2x+3)=0
=> x-5=0
=> x=5
b)
x(1-x)=0
=> _x=0
|_1-x=0=>x=1
Ta có:
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\)\(\frac{1}{\left(x+4\right)\left(x+5\right)}\) \(+\frac{1}{\left(x+5\right)\left(x+6\right)}\) \(+\frac{1}{\left(x+6\right)\left(x+7\right)}=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+5}+\frac{1}{x+5}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+7}\) \(=\frac{1}{18}\)
\(\Leftrightarrow\frac{1}{x+4}-\frac{1}{x+7}=\frac{1}{18}\)
\(\Leftrightarrow x^2+11x-26=0\Leftrightarrow\hept{\begin{cases}x_1=2\\x_2=-13\end{cases}}\)
Vậy nghiệm của phương trình là {2;-13}
Áp dụng BĐT Cauchy schwarz dạng Engel
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{1+1+1}=\frac{1}{3}\)
Dấu ''='' xảy ra khi \(x=y=z=\frac{1}{3}\)
\(\frac{x+1}{2018}-\frac{x+2}{2017}=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+1}{2018}+1-\left(\frac{x+2}{2017}+1\right)=\frac{x+3}{2016}+1\)
\(\Leftrightarrow\frac{x+2019}{2018}-\frac{x+2019}{2017}=\frac{x+2019}{2016}\)
\(\Leftrightarrow\left(x+2019\right)\left(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\right)=0\)
Có: \(\frac{1}{2018}-\frac{1}{2017}-\frac{1}{2016}\ne0\)
\(\Leftrightarrow x+2019=0\Leftrightarrow x=-2019\)
Vậy...
||x| - 2| = 1
\(\Rightarrow\orbr{\begin{cases}\left|x\right|-2=1\\\left|x\right|-2=-1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\left|x\right|=3\\\left|x\right|=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\pm1\\x=\pm3\end{cases}}\)
|x|-2=1
\(\Rightarrow\)x-2\(\in\){1;-1}
+x-2=1
x=1+2
x=3
+x-2=-1
x=-1+2
x=1
Vậy x\(\in\){1;3}