Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: =>x(m^2-2m)-m+x+1<0
=>x(m^2-2m+1)<m-1
=>x(m-1)^2<m-1
TH1: m=1
BPT sẽ là 0x<0(vô lý)
TH2: m<>1
BPT sẽ có nghiệm là x<1/(m-1)
a: =>x(m-1)-2x>-m-2+4
=>x(m-3)>-m+2
TH1: m=3
BPT sẽ là 0x>-3+2=-1(luôn đúng)
TH2: m<3
BPT sẽ có nghiệm là x<(-m+2)/(m-3)
TH3: m>3
BPT sẽ có nghiệm là x>(-m+2)/(m-3)
Bất phương trình tương đương với:
\(\left(m+2\right)x< m^2-4\)(1)
Với \(m+2=0\Leftrightarrow m=-2\)(1) tương đương với:
\(0x< 0\)(vô nghiệm)
Với \(m+2< 0\Leftrightarrow m< -2\)(1) tương đương với:
\(x>\frac{m^2-4}{m+2}=m-2\)
Với \(m+2>0\Leftrightarrow m>-2\) (1) tương đương với:
\(x< \frac{m^2-4}{m+2}=m-2\)
\(\left(m^2-5m+6\right)x=m^2-9\)
\(\Leftrightarrow\left[m\left(m-2\right)-3\left(m-2\right)\right]x=m^2-3^2\)
\(\Leftrightarrow\left[\left(m-2\right)\left(m-3\right)\right]\times x=\left(m-3\right)\left(m+3\right)\) (1)
* Nếu \(\left(m-2\right)\left(m-3\right)\ne0\Leftrightarrow m\Leftrightarrow2;3\)
Phương trình có 1 nghiệm duy nhất \(x=\frac{\left(m-3\right)\left(m+3\right)}{\left(m-2\right)\left(m-3\right)}\Leftrightarrow\frac{m+3}{m-2}\)
* Nếu m = 2
Phương trình (1) \(\Leftrightarrow0x=-5\)
\(\Rightarrow\) phương trình vô nghiệm
* Nếu m = 3
Phương trình (1) \(\Leftrightarrow0x=0\)
\(\Rightarrow\) phương trình có vô số nghiệm khi m = 3
Vậy khi \(m\ne2;3\) thì phương trình có 1 nghiệm duy nhất \(x=\frac{m+3}{m-2}\)
khi m = 2 thì phương trình vô nghiệm
khi m = 3 thì phương trình có vô số nghiệm
( học tốt nha )