
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


có làm thì mới ra ko hỏi han nhìu
chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Giải và biện luận các phương trình sau
a) (x-ab)/(a+b) + (x-ac)/(a+c) + (x-bc)/(b+c) = a+b+c
b) (x-a)/bc + (x-b)/ac + (x-c)/ab = 2(1/a + 1/b + 1/c)

1/x - 1/a + 1/b = (1 -1 +1)/(x -a +b) = 1/(x-a+b)
OK CHỨ BẠN____CHÚC HOK TỐT
\(\frac{1}{a+b-x}+\frac{1}{x}=1+\frac{a+b}{ab}\Leftrightarrow\frac{x+a+b-x}{a+b-x}=\frac{a+b}{ab}\Leftrightarrow\left(a+b\right)\left(\frac{1}{x\left(a+b-x\right)}-\frac{1}{ab}\right)=0\Rightarrow x\left(a+b-x\right)\)=>x=a &b

\(a)\) ĐKXĐ: \(a\ne-b;a\ne-c;b\ne-c\)
\(\dfrac{x-ab}{a+b}+\dfrac{x-ac}{a+c}+\dfrac{x-bc}{b+c}=a+b+c\)
\(\Leftrightarrow\left(\dfrac{x-ab}{a+b}-c\right)+\left(\dfrac{x-ac}{a+c}-b\right)+\left(\dfrac{x-bc}{b+c}-a\right)=0\)
\(\Leftrightarrow\dfrac{x-ab-ac-bc}{a+b}+\dfrac{x-ac-ab-bc}{a+c}+\dfrac{x-bc-ab-ac}{b+c}=0\)
\(\Leftrightarrow\left(x-ab-ac-bc\right)\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}\right)=0\)
Vì \(a,b,c>0\Rightarrow\dfrac{1}{a+b}+\dfrac{1}{a+c}+\dfrac{1}{b+c}>0\)
\(\Leftrightarrow x-ab-ac-bc=0\)
\(\Leftrightarrow x=ab+ac+bc\)

PT : \(\frac{1}{x}-\frac{1}{a}+\frac{1}{b}=\frac{1}{x-a+b}\). Điều kiện xác định : \(x\ne0,x\ne a-b\)
\(\Leftrightarrow\frac{ab-bx+ax}{abx}=\frac{1}{x-a+b}\)
\(\Leftrightarrow\left(ab-bx+ax\right)\left(x-a+b\right)=abx\)
\(\Leftrightarrow\left[x\left(a-b\right)+ab\right]\left[x-\left(a-b\right)\right]=abx\)
\(\Leftrightarrow\left[x-\left(a-b\right)\right].x\left(a-b\right)+\left[x-\left(a-b\right)\right].ab=abx\)
\(\Leftrightarrow x^2\left(a-b\right)-x\left(a-b\right)^2+abx-ab\left(a-b\right)=abx\)
\(\Leftrightarrow\left(a-b\right)\left[\left(a-b\right)x^2-\left(a-b\right)x-ab\right]=0\)
Đến đây bạn tự biện luận nhé :)

\(x^2\left(x+2a\right)-\left(a+1\right)^2\left(x+2a\right)=0\)
\(\Leftrightarrow\left(x+2a\right)\left[x^2-\left(a+1\right)^2\right]=0\)
\(\Leftrightarrow\left(x+2a\right)\left(x+a+1\right)\left(x-a-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2a\\x=-a-1\\x=a+1\end{matrix}\right.\)
Pt đã cho luôn có 3 nghiệm (như trên) với mọi a
\(\left\{{}\begin{matrix}-a-1-\left(-2a\right)=a-1< 0\\\left(-a-1\right)-\left(a+1\right)=-2\left(a+1\right)< 0\\\end{matrix}\right.\)
\(\Rightarrow x=-a-1\) là nghiệm nhỏ nhất