Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A= 1, B= 2, B=3
x= 8, y=5, z=3
Ax + By = Cz = 1 x 8 + 2 x 5 = 3 x 6
A B C có bội số chung nhỏ nhất là 6
;v Đề tuyển sinh là theo mỗi tỉnh ;v searrch gg tỉnh nào mà chẳng có =))
lần sau bn gửi thêm thông tin vòng mấy hộ mik nhé, mik muốn biết câu hỏi ở vòng nào
vòng 14 của phần mềm tự luyện violympic 25 vòng đó bạn :D
đặt chiều rộng là a(a>0)
=>chiều dài là 40/a
ta có pt
\(\left(a+3\right)\left(\dfrac{40}{a}+3\right)=88\)
\(\Rightarrow a=5\)
\(\Rightarrow\) kích thước còn lại là 8
Lời giải:
Ta có \(P=\frac{1}{a^2+b^2}+\frac{1}{2ab}+\frac{1}{4ab}+\frac{1}{4ab}+4ab\)
Áp dụng BĐT Cauchy-Schwarz:
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\geq \frac{4}{a^2+b^2+2ab}=\frac{4}{(a+b)^2}\geq 4\)
Áp dụng BĐT AM-GM: \(\frac{1}{4ab}+4ab\geq 2\).
Và \(1\geq a+b\geq 2\sqrt{ab}\rightarrow ab\leq \frac{1}{4}\)
Do đó \(P\geq 4+1+2=7\) hay \(P_{\min}=7\)
Dấu bằng xảy ra khi \(a=b=\frac{1}{2}\)
1a) \(\sqrt{4+\sqrt{8}}.\sqrt{2+\sqrt{2+\sqrt{2}}}.\sqrt{2-\sqrt{2+\sqrt{2}}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{\left(2+\sqrt{2+\sqrt{2}}\right)\left(\sqrt{2-\sqrt{2+\sqrt{2}}}\right)}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{4-2-\sqrt{2}}\)
\(=\sqrt{4+\sqrt{8}}.\sqrt{2-\sqrt{2}}=\sqrt{\left(4+\sqrt{8}\right)\left(2-\sqrt{2}\right)}\)
\(=\sqrt{8-4\sqrt{2}-\sqrt{16}+2\sqrt{8}}\)
\(=\sqrt{8-4\sqrt{2}-4+4\sqrt{2}}\)
\(=\sqrt{4}=2\)
1b) \(\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{4+4\sqrt{3}+3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{48-20-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{25-10\sqrt{3}+3}}\)
\(=\sqrt{5\sqrt{3}+5\sqrt{\left(5-\sqrt{3}\right)^2}}\)
\(=\sqrt{5\sqrt{3}+25-5\sqrt{3}}\)
\(=\sqrt{25}=5\)
b)
\(\Leftrightarrow\left(m^2-2+1\right)x=3-2-m\)
<=> (m-1)(m+1)x =1-m
=> m =1 đúng moi x thuộc R
m khác 1
x=1/(m+1)