K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2016

thanks

13 tháng 8 2016

Dòng 1 : mx ở đây ra vậy?

11 tháng 6 2017

Câu này là C đúng hog

3 tháng 11 2018

A. \(x^2-2mx+m^2-2m+1=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(-2m\right)^2-4.\left(m^2-2m+1\right)\)

= \(4m^2-4m^2+8m-4\)

= 8m - 4

+Nếu Δ > 0

⇔ 8m - 4 > 0

⇔ m > \(\dfrac{1}{2}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{2m+\sqrt{8m-4}}{2}=m+\sqrt{2m-1}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{2m-\sqrt{8m-4}}{2}=m-\sqrt{2m-1}\)

+Nếu Δ =0

⇔ 8m - 4 = 0

⇔ m = \(\dfrac{1}{2}\)

phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{2m}{2}=m\) = \(\dfrac{1}{2}\)

+Nếu Δ < 0

⇔ 8m - 4 < 0

⇔ m< \(\dfrac{1}{2}\)

Phương trình vô nghiệm

B. \(x^2+\left(m-1\right)x-2m^2+m=0\)

Ta có: Δ = \(b^2-4ac\)

= \(\left(m-1\right)^2-4\left(-2m^2+m\right)\)

= \(m^2-2m+1+8m^2-4m\)

= \(9m^2-6m+1\)

+Nếu Δ > 0

\(9m^2-6m+1\) > 0

⇔ m ≠ \(\dfrac{1}{3}\)

Phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b+\sqrt{\Delta}}{2a}=\dfrac{-m+1+\sqrt{9m^2-6m+1}}{2}\)

\(x_2=\dfrac{-b-\sqrt{\Delta}}{2a}=\dfrac{-m+1-\sqrt{9m^2-6m+1}}{2}\)

+Nếu Δ = 0

\(9m^2-6m+1=0\)

⇔ m = \(\dfrac{1}{3}\)

Phương trình có nghiệm kép:

\(x_1=x_2=\dfrac{-b}{2a}=\dfrac{-\left(m-1\right)}{2}=\dfrac{-\left(\dfrac{1}{3}-1\right)}{2}=\dfrac{1}{3}\)

+Nếu Δ < 0

\(9m^2-6m+1< 0\)

⇔ m ∈ ∅