K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 9: B

Câu 10: A

Câu 1: Vì (d') vuông góc với (d) nên \(a\cdot\dfrac{-1}{3}=-1\)

hay a=3

Vậy: (d'): y=3x+b

Thay x=4 và y=-5 vào (d'), ta được:

b+12=-5

hay b=-17

Câu 1: 

TXĐ: D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1=2x^4-3x^2+1=f\left(x\right)\)

Vậy: f(x) là hàm số chẵn

1 tháng 11 2021

Mình cảm ơn ạ

15 tháng 10 2021

a: \(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CB}\right|=10a\)

b: \(\left|\overrightarrow{AB}+\overrightarrow{AC}\right|=\dfrac{BC}{2}=5a\)

6 tháng 8 2021

a)PQ \(\left\{{}\begin{matrix}quaP\left(1;-4\right)\\vtcp\overrightarrow{PQ}\left(1;7\right)\Rightarrow vtpt\overrightarrow{n}\left(7;-1\right)\end{matrix}\right.\)

\(\Rightarrow PQ:7x-y-11=0\)

b) Gọi pt đt tâm (O) có dạng (C):\(x^2+y^2=R^2\)

Do (C) tiếp xúc với đt \(2x+y-3=0\)

\(\Rightarrow R=d_{\left(O;\Delta\right)}=\dfrac{\left|2.0+0-3\right|}{\sqrt{2^2+1}}=\dfrac{3\sqrt{5}}{5}\)

\(\Rightarrow\left(C\right):x^2+y^2=\dfrac{9}{5}\)

c)\(I\in\left(\Delta\right)\Rightarrow I\left(t;3-2t\right)\)

\(IQ=R\Leftrightarrow\sqrt{\left(2-t\right)^2+4t^2}=3\)

\(\Rightarrow\left[{}\begin{matrix}t=\dfrac{2+\sqrt{29}}{5}\\t=\dfrac{2-\sqrt{29}}{5}\end{matrix}\right.\)\(\Rightarrow I\left(\dfrac{2+\sqrt{29}}{5};\dfrac{11-2\sqrt{29}}{5}\right);I\left(\dfrac{2-\sqrt{29}}{5};\dfrac{11+2\sqrt{29}}{5}\right)\)

Vậy pt đường tròn tâm I cần tìm là: \(\left(C\right)':\left(x-\dfrac{2+\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11-2\sqrt{29}}{5}\right)^2=9\) hoặc \(\left(C\right)':\left(x-\dfrac{2-\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11+2\sqrt{29}}{5}\right)^2=9\)

NV
6 tháng 8 2021

a.

\(\overrightarrow{PQ}=\left(1;7\right)\Rightarrow\) đường thẳng PQ nhận \(\left(7;-1\right)\) là 1 vtpt

Phương trình PQ:

\(7\left(x-2\right)-1\left(y-3\right)=0\Leftrightarrow7x-y-11=0\)

b.

Do đường tròn tiếp xúc denta nên \(R=d\left(O;\Delta\right)\)

\(\Rightarrow R=\dfrac{\left|2.0-0-3\right|}{\sqrt{2^2+1^2}}=\dfrac{3}{\sqrt{5}}\)

Phương trình đường tròn: \(x^2+y^2=\dfrac{9}{5}\)

c.

Do I thuộc denta nên tọa độ có dạng: \(I\left(a;3-2a\right)\)

\(\Rightarrow\overrightarrow{IQ}=\left(2-a;2a\right)\) \(\Rightarrow IQ^2=\left(2-a\right)^2+4a^2\)

Do đường tròn qua Q nên \(IQ=R\Rightarrow IQ^2=R^2\)

\(\Rightarrow\left(2-a\right)^2+4a^2=9\)

\(\Rightarrow5a^2-4a-5=0\Rightarrow\left[{}\begin{matrix}a=\dfrac{2+\sqrt{29}}{5}\\a=\dfrac{2-\sqrt{29}}{5}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}I\left(\dfrac{2+\sqrt{29}}{5};\dfrac{11-2\sqrt{29}}{5}\right)\\I\left(\dfrac{2-\sqrt{29}}{5};\dfrac{11+2\sqrt{29}}{5}\right)\end{matrix}\right.\)

Có 2 đường tròn thỏa mãn:

\(\left(x-\dfrac{2+\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11-2\sqrt{29}}{5}\right)^2=9\)

\(\left(x-\dfrac{2-\sqrt{29}}{5}\right)^2+\left(y-\dfrac{11+2\sqrt{29}}{5}\right)^2=9\)

5 tháng 11 2016

Cau 1:

Đkxđ: 2x-4\(\ge\)0

(ngoặc nhọn) 3-x> 0

khi và chỉ khi : x\(\ge\)2 và x<3

5 tháng 11 2016

Mình hỏi câu 4 mà bạn

Câu 1:
TXĐ:D=R

\(f\left(-x\right)=2\cdot\left(-x\right)^4-3\cdot\left(-x\right)^2+1\)

\(=2x^4-3x^2+1=f\left(x\right)\)

=>f(x) là hàm số chẵn

 

NV
15 tháng 3 2022

Pt có 2 nghiệm trái dấu khi:

\(ac< 0\Leftrightarrow2\left(m+3\right)< 0\)

\(\Rightarrow m< -3\)