Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : 2 . ( a + b ) = ab
=> 2 . a + 2 . b = 10 . a + b
=> 10 . a - 2 . a = 2 . b - b
=> 8 . a = b
Vì a , b\(\in\)N ; a , b là chữ số và a\(\ne\)0
+) Nếu a = 1 => b = 8 . a = 8 . 1 = 8
=> ab = 18
Mà ab - 14 = 18 - 14 = 4 = 22 hoặc ( - 2 )2 => ab = 18 ( chọn )
+) Nếu a = 2 => b = 8 . a = 8 . 2 = 16 ( loại vì b là chữ số )
Vậy ab = 18
Mk chỉ bt lm` nz thôy ! Sai thì bỏ qa nha =))
Goodluck ...
Có vẻ khá lâu rùi ko có ai giải bài này.
1. \(\overline{ab}^2=\overline{abc}+c^2\le999+9^2=1080\)
\(\Leftrightarrow\overline{ab}\le31\) . Cũng có: \(\overline{ab}\ge10\) vì là số có 2 chữ số
\(\overline{ab}^2-10.\overline{ab}=c^2+c\)
Với \(\overline{ab}\ge16\) thì \(\overline{ab}^2-10\overline{ab}\ge96>90=9^2+9\ge c^2+c\) (ko t/m)
Vậy \(10\le\overline{ab}\le16\)
Thử từng trường hợp tìm được \(\overline{abc}=100;\overline{abc}=147\)
2. Dễ thấy \(32^2\le\overline{ab}^2=\overline{acdb}\le99^2\) do \(\overline{acdb}\) có 4 chữ số.
Ta chứng minh được với a nhận các giá trị từ 1 tới 8 thì:
\(\overline{ab}^2=100a^2+20ab+b^2\le100a^2+180a+81< 1000a< \overline{acdb}\)
(Thay lần lượt các giá trị vô là xong)
Do đó \(a=9\). Vì \(\overline{ab}^2\) có tận cùng là b nên b nhận các giá trị 0,1,5,6.
Thử từng trường hợp ta được \(\overline{ab}=95;\overline{ab}=96\)
vì abcd,ab,ac là số nguyên tố nên là số lẻ hay b,c,d lẻ và khác 5. Ta có :
b2 = cd + b - c \(\Rightarrow\)b ( b - 1 ) = cd - c = 10c + d - c = 9c + d \(\ge\)10
\(\Rightarrow\)b \(\ge\)4 \(\Rightarrow\) b = 7 hoặc b = 9
+) b = 7 ta có : 9c + d = 42 \(\Rightarrow\)d \(⋮\)3 \(\Rightarrow\)d = 3 hoặc d = 9
Nếu d = 3 thì c = \(\frac{39}{9}\)( loại )
Nếu d = 9 thì c = \(\frac{33}{9}\)( loại )
+) b = 9 thì 9c + d = 72 \(\Rightarrow\)d = 9 ; c = 7
Mà a7 và a9 là số nguyên tố thì a = 1
Vậy abcd = 1979
Ta có: \(\overline{ab}\) là số nguyên tố vì thế, b lẻ, do đó: a2+3 phải là số chẵn. Hay a là số lẻ. Ta xét các trường hợp: Nếu: a=1 suy ra: 10+b=b2+4 hay (b-3)(b+2)=0; ta tìm được b=3. Nếu: a=3 suy ra: 30+b=b2+12 hay b2-b-18=0. Phương trình không có nghiệm nguyên dương. Nếu: a=5 suy ra: 50+b=b2+28 tương tự... Nếu a=7; a=9... Tìm được số nhà của Bình là 13.
Đặt A = \(\frac{ab}{a+b}=\frac{10a+b}{a+b}=1+\frac{9a}{a+b}=1+\frac{9}{\frac{a+b}{a}}=1+\frac{9}{1+\frac{b}{a}}\)
Để A đạt giá trị nhỏ nhất thì \(\frac{9}{1+\frac{b}{a}}\)nhỏ nhất \(\Rightarrow\)\(1+\frac{b}{a}\)lớn nhất \(\Rightarrow\frac{b}{a}\)lớn nhất \(\Rightarrow\)b lớn nhất , a nhỏ nhất
\(\Rightarrow\)b = 9 ; a = 1
Vậy \(A_{min}=\frac{19}{1+9}=1,9\)