K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

300km

30 tháng 6 2016

Bạn ơi phương trình là gì hả bạn.??

25 tháng 10 2017

mai mk giúp cho. hôm nay mik bận làm đề cương rồi

okokok

11 tháng 2 2017

Kẽ BH vuông góc CD=>DH+HC=7=>HC=7-3=4 xét tam giác BHC có:

BHC+HCB+CBH=180o( tổng ba góc trong 1 tam giác)

CBH=180-90-45=45o

=> tam giác BHC là tam giác vuông cân

=> HC=BH=4cm

SABCD=SABHD+SBHC=\(3.4+\left(\frac{4.4}{2}\right)=20cm^2\)

Câu 4: 

a: ĐKXĐ: \(x\notin\left\{0;-5\right\}\)

b: \(A=\dfrac{x^2+2x}{2\left(x+5\right)}+\dfrac{x-5}{x}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2}{2x\left(x+5\right)}+\dfrac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\dfrac{50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)

\(=\dfrac{x^3+4x^2-5x}{2x\left(x+5\right)}=\dfrac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}\)

\(=\dfrac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\dfrac{x-1}{2}\)

c: Để A=-3 thì x-1=-6

hay x=-5(loại)

14 tháng 9 2017

Điều kiện:

\(x-1\ne0\Rightarrow x\ne1\)

\(x^3+x\ne0\Leftrightarrow x\ne0\)

4 tháng 3 2017

Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)

\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)

\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)

Từ \(\left(1\right),\left(2\right)\)\(\left(3\right)\) nhân vế theo vế ta được:

\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)

mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)

nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)

Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:

\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)

Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.

7 tháng 3 2017

\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)

= \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{121}{120}\)

= \(\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{11^2}{10.12}\)

= \(\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}.\dfrac{4}{5}.....\dfrac{11}{10}.\dfrac{11}{12}\)

= \(\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)

= \(2.\dfrac{11}{12}\)

= \(\dfrac{11}{6}\)

\(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{120}\right)\\ =\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{121}{120}\\ =\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{11^2}{10.12}\\ \)

\(=\frac{2.11}{1.12}=\frac{11}{6}\)

14 tháng 11 2017

Áp dụng phương pháp hệ số bất định ta có

x4-6x3+12x2-14x+3

= (x2+ax+b)(x2+cx+d)

= x4 + (a+c)x3+(ac+b+d)x2+(ad+bc)x+bd

Đồng nhất đa thức trên với đề bài ta có

\(\left[{}\begin{matrix}a+c=-6\\ac+b+d=12\\ad+bc=-14\\bd=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}a=-2\\b=3\\c=-4\\d=1\end{matrix}\right.\)

Thế a,b,c,d ta được

x4-6x3+12x2-14x+3

= (x2+ax+b)(x2+cx+d)

= (x2-2x+3)(x2-4x+1)

14 tháng 11 2017

Bài 2

1/ \(\dfrac{x-342}{15}+\dfrac{x-323}{17}+\dfrac{x-300}{19}+\dfrac{x-273}{21}=10\)

\(\Leftrightarrow\dfrac{x-342}{15}-1+\dfrac{x-323}{17}-2+\dfrac{x-300}{19}-3+\dfrac{x-273}{21}-4=0\)\(\Leftrightarrow\dfrac{x-357}{15}+\dfrac{x-357}{17}+\dfrac{x-357}{19}+\dfrac{x-357}{21}=0\)

\(\Leftrightarrow\left(x-357\right)\left(\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}\right)=0\)

\(\dfrac{1}{15}+\dfrac{1}{17}+\dfrac{1}{19}+\dfrac{1}{21}>0\)

\(\Rightarrow x-357=0\Leftrightarrow x=357\)

2/ Ta có: \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0\)

\(\Leftrightarrow x^2+y^2+z^2-xy-yz-zx\ge0\)

\(\Leftrightarrow\left(x+y+z\right)^2\ge3\left(xy+yz+zx\right)\)

\(\Leftrightarrow\dfrac{\left(x+y+z\right)^2}{3}\ge xy+yz+zx\)

\(\Leftrightarrow xy+yz+zx\le3\)

\(\Rightarrow\) GTLN của B là 3

Dấu ''='' xảy ra khi và chỉ khi \(x=y=z=1\)

17 tháng 5 2017

Câu hỏi của Nguyễn Châu - Toán lớp 9 | Học trực tuyến