Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10cm
Xét ΔBAC vuông tại A có
\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{3}{5}\)
\(\Leftrightarrow\widehat{C}\simeq37^0\)
\(\Leftrightarrow\widehat{B}=53^0\)
Bài 2:
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)và\(AH\perp BC\)
\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)
\(AH^2=25.64\)
\(AH=\sqrt{1600}=40cm\)
Xét \(\Delta ABH\)có\(\widehat{H}=90^o\)
\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)
\(\Rightarrow\widehat{B}\approx58^o\)
Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)
\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)
\(58^o+\widehat{C}=90^o\)
\(\Rightarrow\widehat{C}\approx90^o-58^o\)
\(\widehat{C}\approx32^o\)
a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay \(BC=\sqrt{193}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{12}{\sqrt{193}}\)
\(\Leftrightarrow\widehat{B}\simeq60^0\)
\(\Leftrightarrow\widehat{C}=30^0\)
Bài 1:
Xét ΔABC vuông tại A có
\(AB^2+AC^2=BC^2\)
hay \(AB=\sqrt{13}\left(cm\right)\)
Xét ΔABC vuông tại A có
\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)
nên \(\widehat{B}=59^0\)
hay \(\widehat{C}=31^0\)
d: Xét ΔABC vuông tại A có
\(\widehat{B}+\widehat{C}=90^0\)
nên \(\widehat{C}=30^0\)
Xét ΔABC vuông tại A có
\(AC=AB\cdot\tan30^0\)
nên \(AC=6\sqrt{3}\left(cm\right)\)
\(\Leftrightarrow BC=12\left(cm\right)\)
Tam giác ABC vuông tại A có\(AB^2+AC^2=BC^2\)(Định lí pi ta go)
Hay \(a^2+b^2=c^2\Rightarrow45^2+25^2=c^2\)
\(\Rightarrow c=\sqrt{45^2+25^2}\)
\(\Rightarrow c=5\sqrt{106}\approx51.478\)
Ta có \(\sin B=\frac{AC}{Bc}=\frac{b}{c}=\frac{25}{51.478}\approx0.486\)
\(\Rightarrow\widehat{B}\approx29^o\)
\(\Rightarrow\widehat{C}=61^o\)
Các câu cong lại bn là tương tự nhé
:v kí hiệu vậy ai biết ở đâu
coi b là cạnh huyền nhé!
Áp dụng Pythagoras cho b = căn 61
Dùng sin cos .-.