Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: ΔABC cân tại A
mà AH là đường cao
nên H là trung điểm của BC
=>BH=CH=8(cm)
XétΔABH vuông tại H có
\(AB^2=AH^2+HB^2\)
hay AH=15(cm)
Xét ΔABC có
\(\cos A=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{161}{289}\)
\(\Leftrightarrow\widehat{A}=56^0\)
\(\Leftrightarrow\widehat{B}=\dfrac{180^0-56^0}{2}=62^0\)
Áp dụng hệ thức về cạnh trong tam giác vào ΔABC, ta được:
\(AB\cdot AC=BC\cdot AH\)
\(\Leftrightarrow AH=\frac{AB\cdot AC}{BC}=\frac{17\cdot17}{16}=18.0625cm\)
Vậy: AH=18,0625cm
kẻ đường cao AH
Ta có: BH=HC=\(\frac{BC}{2}=\frac{c}{2}\)\(\frac{ }{ }\)
theo hệ thức lượng trong tam giác vuông ta có: \(AH^2=BH.HC=>AH=\sqrt{\frac{c}{2}.\frac{c}{2}}=\frac{c^2}{4}\)
diện tích tam giác ABC = \(\frac{1}{2}.AH.BC=\frac{1}{2}.\frac{c^2}{4}.c=\frac{c}{8}\)
vậy diện tích tam giác ABC = \(\frac{c}{8}\)
C
AH là đường cao tam giác ABC cân tại A nên cũng là trung tuyến
\(\Rightarrow BH=HC=\dfrac{1}{2}BC=8\)
Ta có \(\cos\widehat{B}=\dfrac{BH}{AB}=\dfrac{8}{17}\approx\cos61^0\)
Do đó \(\widehat{B}=\widehat{C}\approx61^0\left(\Delta ABC.cân.tại.A\right)\)
Ta có \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\Rightarrow\widehat{A}=180^0-2\cdot61^0=58^0\)
Ta có \(AH=\sin\widehat{B}\cdot AB=\sin61^0\cdot17\approx0,9\cdot17=15,3\)
a: \(\widehat{C}=60^0\)
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
=>AC=2,5cm
\(\Leftrightarrow AB=\dfrac{5\sqrt{3}}{2}\left(cm\right)\)
b: Xét ΔABC vuông tại A có AH là đường cao
nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BH=3,75\left(cm\right)\\CH=1,25\left(cm\right)\end{matrix}\right.\)
a: góc C=90-58=32 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>AB=72*sin32\(\simeq38,15\left(cm\right)\)
=>\(AC=\sqrt{BC^2-AB^2}\simeq61,06\left(cm\right)\)
b: góc C=90-48=42 độ
Xét ΔABC vuông tại A có sin B=AC/BC
=>\(BC=\dfrac{20}{sin48}\simeq26,91\left(cm\right)\)
=>\(BA\simeq18,00\left(cm\right)\)