Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{1}{x-1}\)-\(\frac{3x2}{x3-1}\)=\(\frac{2x}{x2+x+1}\)
<=> \(\frac{1}{x-1}\)-\(\frac{3x2}{\left(x-1\right)\left(x2+x+1\right)}\)=\(\frac{2x}{x2+x+1}\) ĐKXĐ: x khác 1
<=> x2+x+1 - 3x2 = 2x(x-1)
<=>x2+x+1 - 3x2 = 2x2-2x
<=>x2-3x-1=0( đoạn này làm nhanh nhé)
<=>x2-2*\(\frac{3}{2}\)x +\(\frac{9}{4}\)-\(\frac{9}{4}\)-1=0
<=>(x-\(\frac{3}{2}\))2-\(\frac{13}{4}\)=0
<=>(x-\(\frac{3-\sqrt{13}}{2}\))(x-\(\frac{3+\sqrt{13}}{2}\))=0
\(\begin{cases}x=\frac{3+\sqrt{13}}{2}\\x=\frac{3-\sqrt{13}}{2}\end{cases}\)
b) pt... đkxđ x khác 1;2;3
<=> 3(x-3) +2(x-2)=x-1
<=> 3x-9 +2x-4 = x-1
<=> 4x= 12
<=> x=3 ( ko thỏa đk)
vậy pt vô nghiệm
mình nghĩ sửa đề bài là \(\frac{\sqrt{x^2-x+6}+7\sqrt{x}-\sqrt{6\left(x^2+5x-2\right)}}{x+3-\sqrt{2\left(x^2+10\right)}}\le0\)
\(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)
\(=>x^2+x+1-3x^2=2x\left(x-1\right)\)
\(=>-2x^2+x+1=2x^2-2x\)
\(=>-4x^2+3x+1=0\)
\(=>\left(x-1\right)\left(x+\frac{1}{4}\right)=0\)'
\(=>\orbr{\begin{cases}x-1=0\\x+\frac{1}{4}\end{cases}=>\orbr{\begin{cases}x=1\\x=-\frac{1}{4}\end{cases}}}\)
a/ \(\frac{2x^3}{4x^7}=\frac{1}{2x^4}\) với ĐKXĐ : \(x\ne0\)
b/ \(\frac{x-1}{\left(x+1\right)^2}.\frac{x^2+2x+1}{x^2-1}=\frac{x-1}{\left(x+1\right)^2}.\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}=\frac{1}{x+1}\) với ĐKXĐ : \(x\ne\pm1\)
c/ \(\frac{x^2-7x+12}{x^2-16}=\frac{\left(x-4\right)\left(x-3\right)}{\left(x-4\right)\left(x+4\right)}=\frac{x-3}{x+4}\) với ĐKXĐ : \(x\ne\pm4\)
d/ \(\frac{x-1}{\sqrt{x}+1}:\left(\sqrt{x}-1\right)=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}.\frac{1}{\sqrt{x}-1}=1\) với ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
\(A=\left(\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{x-1}\right):\left(\frac{x+2}{x+\sqrt{x}-2}-\frac{\sqrt{x}}{\sqrt{x}+2}\right)\left(ĐK:x\ge0;\ne1\right)\)
\(=\left[\frac{3}{\sqrt{x}-1}-\frac{\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{x+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}+2}\right]\)
\(=\frac{3\left(\sqrt{x}+1\right)-\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{3\sqrt{x}+3-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\frac{x+2-x+\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
\(=\frac{2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}\)
\(=\frac{2\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)}=\frac{2\left(\sqrt{x}+3\right)}{\sqrt{x}+1}\)
=> ĐKXĐ : \(\hept{\begin{cases}x\ne0\\x+1\ne0\\x+\frac{3}{x}\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\\frac{1}{x}\left(x^2+3\right)\ge0\end{cases}}\Leftrightarrow\hept{\begin{cases}x\ne0\\x\ne-1\\x\ge1\end{cases}}\Leftrightarrow x\ge1\)
Pt \(\Leftrightarrow x+\frac{3}{x}=\frac{\left(x^2+7\right)^2}{4.\left(x+1\right)^2}\)
\(\Leftrightarrow\frac{x^2+3}{x}=\frac{\left(x^2+7\right)^2}{4.\left(x+1\right)^2}\)
\(\Leftrightarrow\left(x^2+3\right)\left(4x^2+8x+4\right)=x.\left(x^4+14x^2+49\right)\)
\(\Leftrightarrow4x^4+12x^2+8x^3+24x+4x^2+12=x^5+14x^3+49x\)
\(\Leftrightarrow-x^5+4x^4-6x^3+16x^2-25x+12=0\)
Tới đây, giải phương trình bằng cách nhẩm nghiệm ( Dùng máy tính cầm tay)
ra 2 nghiệm: x = 1 và x = 3 ( Thỏa
Vậy ....