Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x=3y=5z\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)
Áp dụng t/c dtsbn:
\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x-y+z}{15-10+6}=\dfrac{-33}{11}=-3\)
\(\Rightarrow\left\{{}\begin{matrix}x=\left(-3\right).15=-45\\y=\left(-3\right).10=-30\\z=\left(-3\right).6=-18\end{matrix}\right.\)
Theo tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{5}}=\dfrac{x-y+z}{\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{5}}=\dfrac{-33}{\dfrac{11}{30}}=-90\)
Do đó: x=-45; y=-30; z=-18
Ta có :
\(\frac{\frac{x}{4}}{2}=\frac{4}{\frac{x}{2}}\)
\(\Rightarrow\frac{x}{2}.\frac{x}{4}=4.2\)
\(\Rightarrow\frac{x^2}{8}=8\)
=> x2 = 64
=> x2 = ( -8 )2 = 82
=> x ∈ { -8 ; 8 }
\(\frac{2x+2}{5x-3}=\frac{2x+12}{5x+18}\)
=> ( 2x + 2 ) ( 5x + 18 ) = ( 2x + 12 ) ( 5x - 3 )
=> 2x ( 5x + 18 ) + 2 ( 5x + 18 ) = 2x ( 5x - 3 ) + 12 ( 5x - 3 )
=> 10 x 2 + 36x + 10x + 36 = 10 x 2 - 6x + 60 x - 36
=> 36x + 10x + 6x - 60x = - 36 - 36
=> - 8 x = - 72
=> x = 9
1) Ta có: |x+3| \(\ge\)0; |2x+y-4| \(\ge\)0
\(\Rightarrow\) |x + 3| + |2x + y - 4| \(\ge\) 0
Dấu = xảy ra khi x+3=0 và 2x+y-4 = 0 \(\Rightarrow\)x=-3; y=10
1) |x + 3| + |2x + y - 4| = 0
\(\Leftrightarrow\hept{\begin{cases}x+3=0\\2x+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\-6+y-4=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=10\end{cases}}\)
P/s : Easy mà bạn :
Ta có :
\(P\left(x\right)=ax^2+bx+c\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c\\P\left(3\right)=a.3^2+b.3+c\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}P\left(-1\right)=a-b+c\\P\left(3\right)=9a+3b+c\end{cases}}\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=9a+3b+c-\left(a-b+c\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=8a+4b\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4\left(2a+b\right)\)
\(\Rightarrow P\left(3\right)-P\left(-1\right)=4.0=0\)
\(\Rightarrow P\left(3\right)=P\left(-1\right)\)
\(\Rightarrow\)
\(P\left(3\right).P\left(-1\right)=P\left(3\right).P\left(3\right)=\left[P\left(3\right)\right]^2\ge0\)
\(\left(Đcpm\right)\)