\(x^4-x^2-2=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 4 2018

       \(x^4-x^2-2=0 \)
<=> \(x^4\) -\(2x^2+x^2\)- 2 = 0
<=> \(x^2\left(x^2-2\right)+\left(x^2-2\right)=0\)
<=> \(\left(x^2-2\right)\left(x^2+1\right)=0\)
<=>  \(\orbr{\begin{cases}x^2-2=0\\x^2+1=0\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\sqrt{2}\\vôlý\end{cases}}\)
  Vậy phương trình có tập nghiệm là S = ( \(\sqrt{2}\))

24 tháng 2 2019

\(x^2+6x+6+\left(\frac{x+3}{x+2}\right)^2=0\)

\(\Leftrightarrow\left(x+3\right)^2+\left(\frac{x+3}{x+4}\right)^2-3=0\)

đặt x+3=y => x+4=y+1

lại có \(y^2+\frac{y^2}{\left(y+1\right)^2}-3=0\)

Tự giải tiếp đi

24 tháng 2 2019

Bùi Đức Anh phần sau mới khó thì lại kêu tự giải 

30 tháng 4 2018

     \(\left(x^2+4\right)^2+5x\left(x^2+4\right)+4x^2=0\)

\(\Leftrightarrow\) \(\left(x^2+4\right)^2+4x\left(x^2+4\right)+x\left(x^2+4\right)+4x^2=0\)

\(\Leftrightarrow\)\(\left(x^2+4\right)\left(x^2+4+4x\right)+x\left(x^2+4+4x\right)=0\)

\(\Leftrightarrow\)\(\left(x+2\right)^2\left(x^2+4+x\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)   (do x2 + x + 4 = (x + 0,5)2 + 3,75 > 0)

\(\Leftrightarrow\)\(x=-2\)

Vậy...

23 tháng 4 2017

Pt trên có MSC là \(\left(x-1\right)\left(x^2+x+1\right)\)

Quy đồng mẫu số :

\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)

( ĐKXĐ \(x\ne1\))

\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{x^3-1}-\dfrac{3x-3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\dfrac{x^2+x+1+7x-10-3x+3}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow\) \(\dfrac{x^2+5x-6}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\left(KTMĐK\right)\\x=-6\left(TMĐK\right)\end{matrix}\right.\)

Vậy \(S=\left\{-6\right\}\)

23 tháng 4 2017

ĐKXĐ: \(x\ne1\); \(x\ne-1\)

\(\dfrac{1}{x-1}+\dfrac{7x-10}{x^3-1}-\dfrac{3}{x^2+x+1}=0\)

\(\Leftrightarrow\dfrac{x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}+\dfrac{7x-10}{\left(x-1\right)\left(x^2+x+1\right)}-\dfrac{3\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}=0\)

\(\Rightarrow x^2+x+1+7x-10-3x+3=0\)

\(\Leftrightarrow x^2+5x-6=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+6\right)=0\)

\(\Leftrightarrow x-1=0\) ; \(x+6=0\)

+) \(x-1=0\)

\(\Leftrightarrow x=1\) (Không thỏa mãn ĐKXĐ)

+) \(x+6=0\)

\(\Leftrightarrow x=-6\) (Thỏa mãn ĐKXĐ)

Tập nghiệm: \(S=\left\{-6\right\}\)

a: \(\Leftrightarrow\left(\left|x\right|\right)^2-5\left|x\right|-6=0\)

\(\Leftrightarrow\left(\left|x\right|-6\right)\left(\left|x\right|+1\right)=0\)

\(\Leftrightarrow\left|x\right|-6=0\)

=>x=6 hoặc x=-6

b: \(\dfrac{x}{x-2}+\dfrac{5}{\left|x+2\right|}=1\)

Trường hợp 1: x>-2 và x<>2

Pt sẽ là \(\dfrac{x}{x-2}+\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)+5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x+5x-10=x^2-4\)

=>7x=6

hay x=6/7(nhận)

TRường hợp 2: x<-2

Pt sẽ là \(\dfrac{x}{x-2}-\dfrac{5}{x+2}=1\)

\(\Leftrightarrow\left(x-2\right)\left(x+2\right)=x\left(x+2\right)-5\left(x-2\right)\)

\(\Leftrightarrow x^2+2x-5x+10=x^2-4\)

=>-3x=-14

hay x=14/3(loại)

15 tháng 4 2017

x = 0 hoặc x = 1

Tk mình nha!!!

15 tháng 4 2017

\(\frac{x}{x-1}-\frac{2x}{x^2-1}=0\)

\(\frac{x\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}-\frac{2x}{x^2-1}=0\)

\(\frac{x^2+x}{x^2-1}-\frac{2x}{x^2-1}=0\)

\(\frac{x^2-x}{x^2-1}=0\)

\(x.\frac{x-1}{x^2-1}=0\)

=> x=0 hoặc x= 1

Mà nếu x=1 thì x-1 =0 (sai vì x/x-1 có giá trị)

Vậy x = 0

8 tháng 2 2020

Bài 2 :

a, Ta có : \(\left(x+4\right)\left(x-1\right)=0\)

=> \(\left[{}\begin{matrix}x+4=0\\x-1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-4\\x=1\end{matrix}\right.\)

b, Ta có : \(\left(3x-2\right)\left(4x-7\right)=0\)

=> \(\left[{}\begin{matrix}3x-2=0\\4x-7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}3x=2\\4x=7\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=\frac{2}{3}\\x=\frac{7}{4}\end{matrix}\right.\)

c, Ta có : \(\left(x+5\right)\left(x^2+1\right)=0\)

=> \(\left[{}\begin{matrix}x+5=0\\x^2+1=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-5\\x^2+1=0\left(VL\right)\end{matrix}\right.\)

d, Ta có : \(x\left(x-1\right)\left(x^2+4\right)=0\)

=> \(\left[{}\begin{matrix}x=0\\x-1=0\\x^2+4=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=0\\x=1\\x^2+4=0\left(VL\right)\end{matrix}\right.\)

e, Ta có : \(\left(3x+2\right)\left(x+\frac{1}{2}\right)=0\)

=> \(\left[{}\begin{matrix}3x+2=0\\x+\frac{1}{2}=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-\frac{2}{3}\\x=-\frac{1}{2}\end{matrix}\right.\)

f, Ta có : \(\left(x+2\right)\left(x+3\right)\left(x^2+7\right)=0\)

=> \(\left[{}\begin{matrix}x+2=0\\x-3=0\\x^2+7=0\end{matrix}\right.\)

=> \(\left[{}\begin{matrix}x=-2\\x=3\\x^2+7=0\left(VL\right)\end{matrix}\right.\)

8 tháng 2 2020

Bài 1 :

a, Ta có : \(1-\frac{x+3}{4}-\frac{x-2}{6}=0\)

=> \(\frac{12}{12}-\frac{3\left(x+3\right)}{12}-\frac{2\left(x-2\right)}{12}=0\)

=> \(12-3\left(x+3\right)-2\left(x-2\right)=0\)

=> \(12-3x-9-2x+4=0\)

=> \(-5x=-7\)

=> \(x=\frac{7}{5}\)

23 tháng 4 2019

a. \(x^2-x-6=0\)

\(\Leftrightarrow\left(x^2+2x\right)-\left(3x+6\right)=0\)

\(\Leftrightarrow x\left(x+2\right)-3\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b. \(x^2+8x-20=0\)

\(\Leftrightarrow\left(x^2-2x\right)+\left(10x-20\right)=0\)

\(\Leftrightarrow x\left(x-2\right)+10\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+10\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)

c. \(x^4+4x^2-5=0\)

\(\Leftrightarrow\left(x^4+4x^2+4\right)-9=0\)

\(\Leftrightarrow\left(x^2+2\right)^2-3^2=0\)

\(\Leftrightarrow\left(x^2+2+3\right)\left(x^2+2-3\right)=0\)

\(\Leftrightarrow\left(x^2+5\right)\left(x^2-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-5\left(vo.nghiem\right)\\x=1\\x=-1\end{matrix}\right.\)

d. \(x^3-19x-30=0\)

\(\Leftrightarrow\left(x^3-5x^2\right)+\left(5x^2-25x\right)+\left(6x-30\right)=0\)

\(\Leftrightarrow x^2\left(x-5\right)+5x\left(x-5\right)+6\left(x-5\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left[\left(x^2+2x\right)+\left(3x+6\right)\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-5\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\\x=-3\end{matrix}\right.\)

10 tháng 2 2020

\(a.2x^2+7x-9=0\\ \Leftrightarrow2\left(x^2+\frac{7}{2}x-\frac{9}{2}\right)=0\\\Leftrightarrow x^2+\frac{7}{2}x-\frac{9}{2}=0\\ \Leftrightarrow x^2+\frac{9}{2}x-x-\frac{9}{2}=0\\\Leftrightarrow x\left(x+\frac{9}{2}\right)-\left(x+\frac{9}{2}\right)=0\\\Leftrightarrow \left(x-1\right)\left(x+\frac{9}{2}\right)=0\\ \Rightarrow\left[{}\begin{matrix}x-1=0\\x+\frac{9}{2}=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-\frac{9}{2}\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;-\frac{9}{2}\right\}\)

10 tháng 2 2020

\(b.x^2-4x+3=0\\\Leftrightarrow x^2-x-3x+3=0\\ \Leftrightarrow x\left(x-1\right)-3\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-3\right)=0\\\Rightarrow \left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

Vậy tập nghiệm của phương trình trên là \(S=\left\{1;3\right\}\)

4 tháng 5 2018

*\(\dfrac{x-1}{x+2}\)-\(\dfrac{x}{x+2}\)=\(\dfrac{5x-2}{4-x^2}\).ĐKXĐ: x\(\ne\pm2\)

<=>\(\dfrac{\left(x-1\right)\left(2-x\right)}{4-x^2}\)-\(\dfrac{x\left(2-x\right)}{4-x^2}\)=\(\dfrac{5x-2}{4-x^2}\)

=>2x-\(x^2\)-2+x-2x+\(x^2\)=5x-2

<=>x-2=5x-2

<=>x-5x=2-2

<=>-4x=0

<=> x = 0(TM)

Vậy phương trình có tập nghiệm là S={0}

4 tháng 5 2018

*(x+4)(5x+9)-x-4=0

<=>(x+4)(5x+9)-(x+4)=0

<=>(x+4)(5x+9-1)=0

<=>(x+4)(5x+8)=0

<=>x+4= 0 hoặc 5x+8=0

(+) x+4=0 (+)5x+8=0

<=>x=-4 <=>5x=-8

<=>x=\(\dfrac{-8}{5}\)

Vậy phương trình có tập nghiệm là S={\(-4;\dfrac{-8}{5}\)}