K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 4 2021

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

NV
8 tháng 4 2021

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

25 tháng 8 2018

Giúp vs đi mọi người...😣😣

11 tháng 3 2021

1) \(\Leftrightarrow4-4\sqrt{\dfrac{x+2}{x-3}}=x+7\)

\(\Leftrightarrow-4\sqrt{\dfrac{x+2}{x-3}}=x+3\)

\(\Leftrightarrow16\dfrac{x+2}{x-3}=x^2+6x+9\)

\(\Leftrightarrow16x+3=x^3+6x^2+9x-3x^2-18x-27\)

\(\Leftrightarrow x^3+3x^2-25x-59=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4,79\\x=-2,2\\x=-5,58\end{matrix}\right.\)

Vậy tập nghiệm....

 

11 tháng 3 2021

-Nếu c1 bạn bình phương hai vế thì vế trái là HĐT vẫn thiếu B^2

-Bạn chưa đặt đk gì lsao tương đương như thế được

 

22 tháng 7 2019

Ta có:

$p^2=5q^2+4$ chia 5 dư 4 suy ra $p=5k+2(k\in \mathbb{N}^*)$

Ta có:

$(5k+2)^2=5q^2+4\Leftrightarrow 5k^2+4k=q^2\Rightarrow q^2\vdots k$

Mặt khác q là số nguyên tố và $q>k$ nên $k=1$. Thay vào ta được $p=7,q=3$

22 tháng 7 2019

Gửi bài trên sai chỗ :D

DD
2 tháng 1 2023

\(\left(x+1\right)\sqrt{x^2-2x+3}=x^2+1\)

\(\Leftrightarrow\left(x+1\right)\sqrt{x^2-2x+3}-2\left(x+1\right)-\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(\sqrt{x^2-2x+3}-2\right)-\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\dfrac{x^2-2x+3-2^2}{\sqrt{x^2-2x+3}+2}-\left(x^2-2x-1\right)=0\)

\(\Leftrightarrow\left(x^2-2x-1\right)\left(\dfrac{x+1}{\sqrt{x^2-2x+3}+2}-1\right)=0\)

\(\Leftrightarrow x^2-2x-1=0\)

(vì \(\sqrt{x^2-2x+3}>\sqrt{x^2-2x+1}=\left|x-1\right|\ge x-1=x+1-2\)

\(\Leftrightarrow\sqrt{x^2-2x+3}+2>x+1\Leftrightarrow\dfrac{x+1}{\sqrt{x^2-2x+3}+2}< 1\))

\(\Leftrightarrow x=1\pm\sqrt{2}\).