Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.
ĐKXĐ: $x\geq 0$
PT $\Leftrightarrow 6\sqrt{2x}-4\sqrt{2x}+5\sqrt{2x}=21$
$\Leftrightarrow 7\sqrt{2x}=21$
$\Leftrightarrow \sqrt{2x}=3$
$\Leftrightarrow 2x=9$
$\Leftrightarrow x=\frac{9}{2}$ (tm)
b.
ĐKXĐ: $x\geq -2$
PT $\Leftrightarrow \sqrt{25(x+2)}+3\sqrt{4(x+2)}-2\sqrt{16(x+2)}=15$
$\Leftrightarrow 5\sqrt{x+2}+6\sqrt{x+2}-8\sqrt{x+2}=15$
$\Leftrightarrow 3\sqrt{x+2}=15$
$\Leftrightarrow \sqrt{x+2}=5$
$\Leftrightarrow x+2=25$
$\Leftrightarrow x=23$ (tm)
c.
$\sqrt{(x-2)^2}=12$
$\Leftrightarrow |x-2|=12$
$\Leftrightarrow x-2=12$ hoặc $x-2=-12$
$\Leftrightarrow x=14$ hoặc $x=-10$
e.
PT $\Leftrightarrow |2x-1|-x=3$
Nếu $x\geq \frac{1}{2}$ thì $2x-1-x=3$
$\Leftrightarrow x=4$ (tm)
Nếu $x< \frac{1}{2}$ thì $1-2x-x=3$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
Bài 1: Giải phương trình
a) ĐKXĐ: \(x\ge3\)
Ta có: \(\sqrt{100\cdot\left(x-3\right)}=\sqrt{20}\)
\(\Leftrightarrow\left|100\cdot\left(x-3\right)\right|=\left|20\right|\)
\(\Leftrightarrow100\cdot\left|x-3\right|=20\)
\(\Leftrightarrow\left|x-3\right|=\frac{1}{5}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=\frac{1}{5}\\x-3=-\frac{1}{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{16}{5}\left(nhận\right)\\x=\frac{14}{5}\left(loại\right)\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{16}{5}\right\}\)
b) Ta có: \(\sqrt{\left(x-3\right)^2}=7\)
\(\Leftrightarrow\left|x-3\right|=7\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=7\\x-3=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=10\\x=-4\end{matrix}\right.\)
Vậy: S={10;-4}
c) Ta có: \(\sqrt{4x^2+4x+1}=6\)
\(\Leftrightarrow\sqrt{\left(2x+1\right)^2}=6\)
\(\Leftrightarrow\left|2x+1\right|=6\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=5\\2x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\x=\frac{-7}{2}\end{matrix}\right.\)
Vậy: \(S=\left\{\frac{5}{2};\frac{-7}{2}\right\}\)
a
\(\sqrt{9\left(2-3x\right)^2}=6\\ \Leftrightarrow3\left|2-3x\right|=6\\ \Leftrightarrow\left|2-3x\right|=2\)
Với \(x\le\dfrac{2}{3}\) thì PT trở thành:
\(2-3x=2\\ \Leftrightarrow3x=0\\ \Leftrightarrow x=0\left(nhận\right)\)
Với \(x>\dfrac{2}{3}\) thì PT trở thành:
\(3x-2=2\\ \Leftrightarrow3x=4\\ \Leftrightarrow x=\dfrac{4}{3}\left(nhận\right)\)
b
ĐK: \(x\ge-\dfrac{3}{2}\)
\(\sqrt{4x^2-9}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{\left(2x\right)^2-3^2}=2\sqrt{2x+3}\\ \Leftrightarrow\sqrt{2x-3}.\sqrt{2x+3}-2\sqrt{2x+3}=0\\ \Leftrightarrow\sqrt{2x+3}\left(\sqrt{2x-3}-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}\sqrt{2x+3}=0\\\sqrt{2x-3}-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\2x-3=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(nhận\right)\\x=\dfrac{7}{2}\left(nhận\right)\end{matrix}\right.\)
c
ĐK: \(x\ge3\)
\(\sqrt{10\left(x-3\right)}=\sqrt{20}\\ \Leftrightarrow10\left(x-3\right)=20\\ \Leftrightarrow x-3=2\\ \Leftrightarrow x=5\left(nhận\right)\)
d
\(\sqrt{x^2+6x+9}=3x-6\\ \Leftrightarrow\sqrt{\left(x+3\right)^2}=3x-6\\ \Leftrightarrow\left|x+3\right|=3x-6\)
Với \(x\ge-3\) thì PT trở thành:
\(x+3=3x-6\\ \Leftrightarrow x+3-3x+6=0\\ \Leftrightarrow-2x+9=0\\ \Leftrightarrow x=\dfrac{9}{2}\left(nhận\right)\)
Với \(x< -3\) thì PT trở thành:
\(-x-3=3x-6\\ \Leftrightarrow-x-3-3x+6=0\\ \Leftrightarrow-2x+3=0\\ \Leftrightarrow x=\dfrac{3}{2}\left(loại\right)\)
a: ĐKXĐ: x>=-3/2
\(\sqrt{x^2+4}=\sqrt{2x+3}\)
=>\(x^2+4=2x+3\)
=>\(x^2-2x+1=0\)
=>\(\left(x-1\right)^2=0\)
=>x-1=0
=>x=1(nhận)
b: \(\sqrt{x^2-6x+9}=2x-1\)(ĐKXĐ: \(x\in R\))
=>\(\sqrt{\left(x-3\right)^2}=2x-1\)
=>\(\left\{{}\begin{matrix}\left(2x-1\right)^2=\left(x-3\right)^2\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(2x-1-x+3\right)\left(2x-1+x-3\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+2\right)\left(3x-4\right)=0\\x>=\dfrac{1}{2}\end{matrix}\right.\)
=>x=4/3(nhận) hoặc x=-2(loại)
c:
Sửa đề: \(\sqrt{4x+12}=\sqrt{9x+27}-5\)
ĐKXĐ: \(x>=-3\)
\(\sqrt{4x+12}=\sqrt{9x+27}-5\)
=>\(2\sqrt{x+3}=3\sqrt{x+3}-5\)
=>\(-\sqrt{x+3}=-5\)
=>x+3=25
=>x=22(nhận)
d: ĐKXĐ: \(\left[{}\begin{matrix}x< =\dfrac{3-\sqrt{5}}{4}\\x>=\dfrac{3+\sqrt{5}}{4}\end{matrix}\right.\)
\(\sqrt{4x^2-6x+1}=\left|2x-5\right|\)
=>\(\sqrt{\left(4x^2-6x+1\right)}=\sqrt{4x^2-20x+25}\)
=>\(4x^2-6x+1=4x^2-20x+25\)
=>\(-6x+20x=25-1\)
=>\(14x=24\)
=>x=12/7(nhận)
a, Ta có: \(\Delta'=1-m+3=4-m\)
Phương trình có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'>0\Leftrightarrow4-m>0\Leftrightarrow m< 4\)
b, ĐXXĐ: \(x\le\frac{9}{4}\)
\(pt\Leftrightarrow\sqrt{\left(9-4x\right)\left(x-3\right)^2}=\left|-2x+5\right|\sqrt{9-4x}\)
\(\Leftrightarrow\sqrt{9-4x}\left(\left|x-3\right|-\left|-2x+5\right|\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\\left|x-3\right|=\left|-2x+5\right|\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9-4x=0\\x-3=-2x+5\\x-3=2x-5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{9}{4}\\x=\frac{8}{3}\left(l\right)\\x=2\end{matrix}\right.\)
Vậy pt đã cho có 2 nghiệm \(x=2;x=\frac{9}{4}\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
1) \(\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{4-2\sqrt{3}}=\sqrt{3}+1-\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}+1-\sqrt{3}+1=2\)
2) \(\dfrac{3}{5}\sqrt{25x-50}-\sqrt{x-2}=6\left(đk:x\ge2\right)\)
\(\Leftrightarrow3\sqrt{x-2}-\sqrt{x-2}=6\)
\(\Leftrightarrow2\sqrt{x-2}=6\)
\(\Leftrightarrow\sqrt{x-2}=3\)
\(\Leftrightarrow x-2=9\Leftrightarrow x=11\left(tm\right)\)
Làm hơi tắt xíu, có gì ko hiểu cmt nha :>
\(a.\sqrt{x-1}=3\left(ĐK:x\ge1\right)\Leftrightarrow x-1=9\Leftrightarrow x=10\)
\(b.\sqrt{x^2-4x+4}=2\\ \Leftrightarrow\sqrt{\left(x-2\right)^2}=2\\ \Leftrightarrow\left|x-2\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-2=2\left(x\ge2\right)\\2-x=2\left(x< 2\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4\\x=0\end{matrix}\right.\)
\(c.\sqrt{25x^2-10x+1}=4x-9\\ \Leftrightarrow\sqrt{\left(5x-1\right)^2}=4x-9\\ \Leftrightarrow\left|5x-1\right|=4x-9\\\Leftrightarrow \left[{}\begin{matrix}5x-1=4x-9\left(x\ge\frac{1}{5}\right)\\1-5x=4x-9\left(x< \frac{1}{5}\right)\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-8\left(ktm\right)\\x=\frac{10}{9}\left(ktm\right)\end{matrix}\right.\)
\(d.\sqrt{x^2+2x+1}=\sqrt{x+1}\left(ĐK:x\ge-1\right)\\ \Leftrightarrow x^2+2x+1=x+1\\ \Leftrightarrow x^2+x=0\Leftrightarrow x\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\)
e. ĐK: \(\left[{}\begin{matrix}x\ge3\\x\le-3\end{matrix}\right.\)
\(\sqrt{x^2-9}+\sqrt{x^2-6x+9}=0\\ \Leftrightarrow\sqrt{\left(x-3\right)\left(x+3\right)}+\sqrt{\left(x-3\right)^2}=0\\ \Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+\sqrt{x-3}\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\\ \Leftrightarrow x-3=0\Leftrightarrow x=3\)
Câu cuối chưa nghĩ ra, sorry :<
a, ĐKXĐ: \(x^2-4x+4\ge0\Rightarrow\left(x-2\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{x^2-4x+4}=1\\ \Rightarrow x-2=1\\ \Rightarrow x=3\)
b,\(ĐKXĐ:1-4x+4x^2\ge0\Rightarrow\left(1-2x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-4x+4x^2}=5\\ \Rightarrow\left|1-2x\right|=5\\ \Rightarrow\left[{}\begin{matrix}1-2x=5\\1-2x=-5\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)
d, ĐKXĐ: \(\left\{{}\begin{matrix}9x^2\ge0\\2x+1\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge0\\x\ge-\dfrac{1}{2}\end{matrix}\right.\Rightarrow x\ge0\)
\(\sqrt{9x^2}=2x+1\\ \Rightarrow\left|3x\right|=2x+1\\ \Rightarrow\left[{}\begin{matrix}3x=2x+1\\3x=-2x+1\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\)
c, ĐKXĐ: \(1-2x+x^2\ge0\Rightarrow\left(1-x\right)^2\ge0\left(luônđúng\right)\)
\(\sqrt{1-2x+x^2}-6=0\\ \Rightarrow\left|1-x\right|=6\\ \Rightarrow\left[{}\begin{matrix}1-x=-6\\1-x=6\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=7\\x=-5\end{matrix}\right.\)
e, \(\left\{{}\begin{matrix}9-6x+x^2\ge0\\x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left(3-x\right)^2\ge0\left(luônđúng\right)\\x\ge0\end{matrix}\right.\)\(\Rightarrow x\ge0\)
\(\sqrt{9-6x+x^2}=x\\ \Rightarrow\left|3-x\right|=x\\ \Rightarrow\left[{}\begin{matrix}3-x=-x\\3-x=x\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}3=0\left(vôlí\right)\\x=1,5\end{matrix}\right.\)
\(\sqrt{4x^2}=3\left(ĐK:4x^2\ge0\forall x\in R\right)\\ \Leftrightarrow\sqrt{\left(2x\right)^2}=3\\ \Leftrightarrow\left|2x\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}2x=-3\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\left(tm\right)\\x=\dfrac{3}{2}\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{-\dfrac{3}{2};\dfrac{3}{2}\right\}\)
\(\sqrt{x^2-6x+9}=2\\ \Leftrightarrow\sqrt{\left(x-3\right)^2}=2\left(ĐK:\left(x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|x-3\right|=2\\ \Leftrightarrow\left[{}\begin{matrix}x-3=2\\x-3=-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=2+3\\x=-2-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\left(tm\right)\\x=-5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left(\pm5\right)\)
\(\sqrt{\left(2x-3\right)^2}=6\left(ĐK:\left(2x-3\right)^2\ge0\forall x\in R\right)\\ \Leftrightarrow\left|2x-3\right|=6\\ \Leftrightarrow\left[{}\begin{matrix}2x-3=6\\2x-3=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=3+6\\2x=-6+3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=9\\2x=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=4,5\left(tm\right)\\x=-1,5\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{4,5;-1,5\right\}\)
\(\sqrt{25x^2}=100\\ \sqrt{\left(5x\right)^2}=100\left(ĐK:\left(5x\right)^2\ge0\forall x\in R\right)\\\Leftrightarrow \left|5x\right|=100\\ \Leftrightarrow\left[{}\begin{matrix}5x=100\\5x=-100\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=20\left(tm\right)\\x=-20\left(tm\right)\end{matrix}\right.\)
Vậy \(S=\left\{\pm20\right\}\)
Phần thứ hai sai mà chẳng ai biết :D