\(\frac{2x-5}{x-1}\)=\(\frac{1-3x}{x+1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2017

\(\frac{2x-5}{x-1}=\frac{1-3x}{x+1}\)(1)

\(DKXD:\hept{\begin{cases}x-1\ne0\\x+1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne-1\end{cases}}}\)Ta có:

\(\left(1\right)\Leftrightarrow\left(2x-5\right)\left(x+1\right)=\left(x-1\right)\left(1-3x\right)\)

\(\Leftrightarrow2x^2+2x-5x-5=x-3x^2-1+3x\)

\(\Leftrightarrow2x^2+2x-5x-5-x+3x^2+1-3x=0\)

\(\Leftrightarrow5x^2-7x-4=0\)

\(\Leftrightarrow5\left(x^2-\frac{7}{5}x\right)-4=0\)

\(\Leftrightarrow5\left(x^2-2.x.\frac{7}{10}+\frac{49}{100}\right)-5.\frac{49}{100}-4=0\)

\(\Leftrightarrow5\left(x^2-\frac{7}{10}\right)^2-\frac{129}{20}=0\)

\(\Leftrightarrow5\left(x^2-\frac{7}{10}\right)^2=\frac{129}{20}\)

\(\Leftrightarrow\left(x-\frac{7}{10}\right)^2=\frac{129}{100}\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{7}{10}=\sqrt{\frac{129}{100}}=\frac{\sqrt{129}}{10}\\x-\frac{7}{10}=-\sqrt{\frac{129}{100}}=-\frac{\sqrt{129}}{10}\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{129}}{10}+\frac{7}{10}\\x=-\frac{\sqrt{129}}{10}+\frac{7}{10}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{\sqrt{129}+7}{10}\\x=\frac{7-\sqrt{129}}{10}\end{cases}}}\)

7 tháng 7 2017

\(\frac{2x-5}{x-1}=\frac{1-3x}{x+1}\)ĐKXĐ: \(x\ne+-1\)

\(\Rightarrow\left(2x-5\right)\left(x+1\right)=\left(x-1\right)\left(1-3x\right)\)

\(\Leftrightarrow2x^2-5x+2x-5=x-3x^2+3x-1\)

\(\Leftrightarrow2x^2+3x^2-5x+2x+x-3x-5+1=0\)

\(\Leftrightarrow5x^2-5x-4=0\)

......

Sai rồi bạn

22 tháng 6 2020

@Nguyễn Lê Phước Thịnh bạn có thể chỉ chỗ mình sai sót được không ạ? Mình mò không ra ._.

19 tháng 4 2020
https://i.imgur.com/ELjb6a8.jpg

Bài 1:

a) Ta có: \(\frac{4}{5}x-3=\frac{1}{5}x\left(4x-15\right)\)

\(\Leftrightarrow\frac{4x}{5}-3=\frac{4x^2}{5}-3x\)

\(\Leftrightarrow\frac{12x}{15}-\frac{45}{15}-\frac{12x^2}{15}+\frac{45x}{15}=0\)

Suy ra: \(12x-45-12x^2+45x=0\)

\(\Leftrightarrow-12x^2+57x-45=0\)

\(\Leftrightarrow-12x^2+12x+45x-45=0\)

\(\Leftrightarrow-12x\left(x-1\right)+45\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(-12x+45\right)=0\)

\(\Leftrightarrow-3\left(x-1\right)\left(4x-15\right)=0\)

\(-3\ne0\)

nên \(\left[{}\begin{matrix}x-1=0\\4x-15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=15\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\frac{15}{4}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{1;\frac{15}{4}\right\}\)

b) Ta có: \(\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}=\frac{\left(x-3\right)\left(3-x\right)}{4}\)

\(\Leftrightarrow\left(x-3\right)-\frac{\left(x-3\right)\left(2x-5\right)}{6}+\frac{\left(x-3\right)^2}{4}=0\)

\(\Leftrightarrow\frac{12\left(x-3\right)}{12}-\frac{2\left(x-3\right)\left(2x-5\right)}{12}+\frac{3\left(x-3\right)^2}{12}=0\)

Suy ra: \(12\left(x-3\right)-2\left(2x^2-11x+15\right)+3\left(x^2-6x+9\right)=0\)

\(\Leftrightarrow12x-36-4x^2+22x-30+3x^2-18x+27=0\)

\(\Leftrightarrow-x^2+16x-39=0\)

\(\Leftrightarrow-\left(x^2-16x+39\right)=0\)

\(\Leftrightarrow x^2-13x-3x+39=0\)

\(\Leftrightarrow x\left(x-13\right)-3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-13=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=13\\x=3\end{matrix}\right.\)

Vậy: Tập nghiệm S={3;13}

c) Ta có: \(\frac{\left(3x+1\right)\left(3x-2\right)}{3}+5\left(3x+1\right)=\frac{2\left(2x+1\right)\left(3x+1\right)}{3}+2x\left(3x+1\right)\)

\(\Leftrightarrow\frac{9x^2-3x-2}{3}+5\left(3x+1\right)-\frac{12x^2+10x+2}{3}-2x\left(3x+1\right)=0\)

\(\Leftrightarrow\frac{9x^2-3x-2-12x^2-10x-2}{3}-6x^2+13x+5=0\)

\(\Leftrightarrow\frac{-3x^2-13x-4}{3}+\frac{3\left(-6x^2+13x+5\right)}{3}=0\)

Suy ra: \(-3x^2-13x-4-18x^2+39x+15=0\)

\(\Leftrightarrow-21x^2+26x+11=0\)

\(\Leftrightarrow-21x^2-7x+33x+11=0\)

\(\Leftrightarrow-7x\left(3x+1\right)+11\left(3x+1\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(-7x+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\-7x+11=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=-1\\-7x=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{3}\\x=\frac{11}{7}\end{matrix}\right.\)

Vậy: Tập nghiệm \(S=\left\{-\frac{1}{3};\frac{11}{7}\right\}\)

28 tháng 3 2020

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x^2+2\right)}{\left(x+2\right)\left(x-2\right)}\)

=> ( x + 1)( x + 2) + ( x - 1)( x - 2) = 2x2 + 4

<=> x+ 2x + x + 2 + x2 - 2x - x + 2 = 2x+ 4 

<=>  x+ 2x + x +  x2 - 2x - x - 2x2 = 4 - 2 - 2

<=> 0x = 0

Vậy phương trình vô số nghiệm

20 tháng 2 2020

a) \(\frac{4x-8}{2x^2+1}=0\)

\(\Rightarrow4x-8=0\left(2x^2+1\ne0\right)\)

\(\Leftrightarrow4x=8\)

\(\Leftrightarrow x=2\)

Vậy x=2

b)

\(\frac{x^2-x-6}{x-3}=0\)

\(\Leftrightarrow\frac{\left(x-3\right)\left(x+2\right)}{x-3}=0\)

\(\Rightarrow x+2=0\)

\(\Leftrightarrow x=-2\)

Vậy x=-2