\(\frac{21}{x^{2-4x+10}}-x^2+4x-6=0\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2018

PT <=> (x2-4x+6)(x2-4x+10)=21

<=> x4-4x3+10x2-4x3+16x2-40x+6x2-24x+60-21=0

<=> x4-8x3+32x2-64x+39=0

<=> x4-x3-7x3+7x2+25x2-25x-39x+39=0

<=> x3(x-1)-7x2(x-1)+25x(x-1)-39(x-1)=0

<=> (x-1)(x3-7x2+25x-39)=0

<=> (x-1)(x3-3x2-4x2+12x+13x-39)=0

<=> (x-1)[x2(x-3)-4x(x-3)+13(x-3)]=0

<=> (x-1)(x-3)(x2-4x+13)=0

Nhận thấy: x2-4x+13 > 0 với mọi x

=> Phương trình có nghiệm là: \(\orbr{\begin{cases}x-1=0\\x-3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x_1=1\\x_2=3\end{cases}}\)

6 tháng 11 2018

x²-4x+6=√(2x²-5x+3) - √(-3x²+9x-5). 
Ta sẽ dùng đánh giá hai vế như sau : 
VT = x²-4x+6 = x²-4x+4 + 2 = (x-2)² + 2 ≥ 2. 
Dấu = xảy ra khi x = 2. 

VP = √(2x²-5x+3) - √(-3x²+9x-5) 
Áp dụng bất đẳng thức Bunhia Copxki ta có: 
VP = √(2x²-5x+3) - √(-3x²+9x-5) ≤ √[(1² + 1²).(2x²-5x+3 - 3x²+9x-5)] = √[2.(-x²+4x-2)] 
Mà: -x²+4x-2 = - ( x² - 4x+4) + 2 = -(x-2)² + 2 ≤ 2. 
Do đó: VP ≤ √( 2.2) = √4 = 2. 
Dấu = xảy ra khi x = 2. 

Ta có: VT ≥ 2 ; VP ≤ 2 => VT = VP = 2 khi x = 2. 
Vậy x = 2 là nghiệm của phương trình. 
 

a, Đặt \(x^2-4x+8=a\left(a>0\right)\)

\(\Rightarrow a-2=\frac{21}{a+2}\)

\(\Leftrightarrow a^2-4=21\Rightarrow a^2=25\Rightarrow a=5\)

Thay vào là ra

9 tháng 3 2020

b) ĐK: \(y\ne1\)

bpt <=> \(\frac{4\left(1-y\right)}{1-y^3}+\frac{1+y+y^2}{1-y^3}+\frac{2y^2-5}{1-y^3}\le0\)

<=> \(\frac{3y^2-3y}{1-y^3}\le0\)

\(\Leftrightarrow\frac{y\left(y-1\right)}{\left(y-1\right)\left(y^2+y+1\right)}\ge0\)

\(\Leftrightarrow\frac{y}{y^2+y+1}\ge0\)

vì \(y^2+y+1=\left(y+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

nên bpt <=> \(y\ge0\)

NV
10 tháng 2 2020

\(\Leftrightarrow x^3+x^2-2x+5x^2+5x-10=0\)

\(\Leftrightarrow x\left(x^2+x-2\right)+5\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x^2+x-2\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(x+2\right)\left(x-1\right)=0\)

b/ \(\Leftrightarrow x^3+5x^2+6x-x^2-5x-6=0\)

\(\Leftrightarrow x\left(x^2+5x+6\right)-\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

10 tháng 2 2020

\(x^3+6x^2+3x-10=0\)

\(\Leftrightarrow x^3-x^2+7x^2-7x+10x-10=0\)

\(\Leftrightarrow x^2\left(x-1\right)+7x\left(x-1\right)+10\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+5x+10\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-5\end{matrix}\right.\)

Vậy \(S=\left\{1;-2;-5\right\}\)

\(x^3+4x^2+x-6=0\)

\(\Leftrightarrow x^3-x^2+5x^2-5x+6x-6=0\)

\(\Leftrightarrow x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3x+6\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)

Vậy \(S=\left\{1;-2;-3\right\}\)

30 tháng 1 2018

b)       \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)

\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)

\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)

\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)

\(\Leftrightarrow\)\(x-2022=0\)     (vì 1/2017 + 1/2020 - 1/2016 - 1/1954  \(\ne0\))

\(\Leftrightarrow\)\(x=2022\)

Vậy...

30 tháng 1 2018

b)       \(\frac{x-5}{2017}+\frac{x-2}{2020}=\frac{x-6}{2016}+\frac{x-68}{1954}\)

\(\Leftrightarrow\)\(\frac{x-5}{2017}-1+\frac{x-2}{2020}-1=\frac{x-6}{2016}-1+\frac{x-68}{1954}-1\)

\(\Leftrightarrow\)\(\frac{x-2022}{2017}+\frac{x-2022}{2020}=\frac{x-2022}{2016}+\frac{x-2022}{1954}\)

\(\Leftrightarrow\)\(\left(x-2022\right)\left(\frac{1}{2017}+\frac{1}{2020}-\frac{1}{2016}-\frac{1}{1954}\right)=0\)

\(\Leftrightarrow\)\(x-2022=0\)     (vì 1/2017 + 1/2020 - 1/2016 - 1/1954  \(\ne0\))

\(\Leftrightarrow\)\(x=2022\)

Vậy,....

26 tháng 4 2018

a)  \(\left(2x+1\right)\left(3x-2\right)=\left(2x+1\right)\left(5x-8\right)\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2\right)-\left(2x+1\right)\left(5x-8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(3x-2-5x+8\right)=0\)

\(\Leftrightarrow\)\(\left(2x+1\right)\left(6-2x\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}2x+1=0\\6-2x=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-0,5\\x=3\end{cases}}\)

Vậy...

b)   \(ĐKXĐ:\)  \(x\ne-2;\) \(x\ne4\)

          \(\frac{3}{x+2}+\frac{2}{x-4}=0\)

\(\Leftrightarrow\)\(\frac{3\left(x-4\right)}{\left(x+2\right)\left(x-4\right)}+\frac{2\left(x+2\right)}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{3x-12+2x+4}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Leftrightarrow\)\(\frac{5x-8}{\left(x+2\right)\left(x-4\right)}=0\)

\(\Rightarrow\)\(5x-8=0\)

\(\Leftrightarrow\)\(x=\frac{8}{5}\) (T/m đkxđ)

Vậy...

c)  \(x^3+4x^2+4x+3=0\)

\(\Leftrightarrow\)\(x^3+3x^2+x^2+3x+x+3=0\)

\(\Leftrightarrow\)\(x^2\left(x+3\right)+x\left(x+3\right)+\left(x+3\right)=0\)

\(\Leftrightarrow\)\(\left(x+3\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(x+3=0\)  (do  \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\) \(\forall x\))

\(\Leftrightarrow\)\(x=-3\)

Vậy...

26 tháng 4 2018

có thể làm giùm 3 câu còn lại ko bn:)

19 tháng 3 2020

a)⇔ 2x-1/2 -1 = x2+x-3/x-1 - 5x-2/2.(x-1)
⇔ ( 2x-1 ).(x-1) - 2.(x-1)=2.(x2+x-3) - (5x-2)
⇔2x2-3x+1-2x+2=2x2+2x-6-5x+2
⇔2x2-3x+1-2x+2-2x2-2x+6+5x-2=0
⇔-2x+7=0
⇔x=7/2
Vậy ....
b) ⇔3.(x-1)2-(x-1).(x+1)=0
⇔ (x-1).(3x-3-x-1)=0
⇔ (x-1).(2x-4)=0
⇔x=1 hoặc x=2
Vậy....
c) ⇔ 4x2-4x+x-1=0
⇔4x(x-1)+(x-1)=0
⇔(x-1)(4x+1)=0
⇔x=1 hoặc x=-1/4
Vậy....
d) ⇔4x2-4x-3=0
⇔ 4x2-6x+2x-3 = 0
⇔ 2x( 2x-3)+(2x-3)=0
⇔ (2x+3)(2x+1)=0
⇔ x=-3/2 hoặc x=-1/2
vậy ....
leuleu

31 tháng 3 2020

\(a,\frac{2x-1}{2}-1=\frac{x^2+x-3}{x-1}-\frac{5x-2}{2-2x}ĐKXĐ:x\ne1\)

\(\left(2x-1\right)\left(x-1\right)\left(1-x\right)-2\left(x-1\right)\left(1-x\right)=2\left(x^2+x-3\right)\left(1-x\right)-\left(5x-2\right)\left(x-1\right)\)

\(7x^2-8x+3=-5x^2+15x-8\)

\(7x^2-8x+3+5x^2-15x+8=0\)

\(12x^2-23x+11=0\)

\(\left(12x-11\right)\left(x-1\right)=0\)

\(\left[{}\begin{matrix}12x=11\\x=1\end{matrix}\right.\)

\(\left[{}\begin{matrix}x=\frac{11}{12}\\x=1\end{matrix}\right.\)Theo ĐKXĐ => x= \(\frac{11}{12}\)

15 tháng 1 2019

\(a,x^2-10x-39=0\)

\(\Leftrightarrow x^2-10x-39+64=64\)

\(\Leftrightarrow x^2-10x+25=64\)

\(\Leftrightarrow\left(x-5\right)^2=64\)

làm nốt

15 tháng 1 2019

\(x^2-10x-39=0\Leftrightarrow x^2-13x+3x-39=0\Leftrightarrow x\left(x-13\right)+3\left(x-13\right)=0\)

\(\Leftrightarrow\left(x-13\right)\left(x+3\right)=0\Leftrightarrow\orbr{\begin{cases}x=13\\x=-3\end{cases}}\)