Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2x+1}=2+\sqrt{x-3}\left(x\ge3\right)\)
\(\Rightarrow2x+1=4+x-3+4\sqrt{x-3}\Rightarrow x=4\sqrt{x-3}\)
\(\Rightarrow x^2=16\left(x-3\right)\Rightarrow x^2-16x+48=0\Rightarrow\left(x-12\right)\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=12\\x=4\end{matrix}\right.\)
2b. ĐKXĐ : \(x\ge-5\) (*)
Ta có \(\sqrt{x+5}=x^2-5\)
\(\Leftrightarrow4x^2-20-4\sqrt{x+5}=0\)
\(\Leftrightarrow4x^2+4x+1-4.\left(x+5\right)-4\sqrt{x+5}-1=0\)
\(\Leftrightarrow\left(2x+1\right)^2-\left(2\sqrt{x+5}+1\right)^2=0\)
\(\Leftrightarrow\left(x+1+\sqrt{x+5}\right)\left(x-\sqrt{x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=-\sqrt{x+5}\left(1\right)\\x=\sqrt{x+5}\left(2\right)\end{matrix}\right.\)
Giải (1) có (1) \(\Leftrightarrow\left(x+1\right)^2=x+5\) ; ĐK: \(\left(x\le-1\right)\)
\(\Leftrightarrow x^2+x-4=0\Leftrightarrow x=\dfrac{-1\pm\sqrt{17}}{2}\)
Kết hợp (*) và ĐK được \(x=\dfrac{-1-\sqrt{17}}{2}\) là nghiệm phương trình gốc
Giải (2) có (2) <=> \(x^2-x-5=0\) ; ĐK : \(x\ge0\)
\(\Leftrightarrow x=\dfrac{1\pm\sqrt{21}}{2}\)
Kết hợp (*) và ĐK được \(x=\dfrac{1+\sqrt{21}}{2}\) là nghiệm phương trình gốc
Tập nghiệm \(S=\left\{\dfrac{-1-\sqrt{17}}{2};\dfrac{1+\sqrt{21}}{2}\right\}\)
2c. ĐKXĐ \(x\ge1\) (*)
Đặt \(\sqrt{x-1}=a;\sqrt[3]{2-x}=b\left(a\ge0\right)\) (1)
Ta có \(\sqrt{x-1}-\sqrt[3]{2-x}=5\Leftrightarrow a-b=5\)
Từ (1) có \(a^2+b^3=1\) (2)
Thế a = b + 5 vào (2) ta được
\(b^3+\left(b+5\right)^2=1\Leftrightarrow b^3+b^2+10b+24=0\)
\(\Leftrightarrow b^3+8+b^2+10b+16=0\)
\(\Leftrightarrow\left(b+2\right).\left(b^2-b+12\right)=0\)
\(\Leftrightarrow b=-2\) (Vì \(b^2-b+12=\left(b-\dfrac{1}{2}\right)^2+\dfrac{47}{4}>0\forall b\)
Với b = -2 \(\Leftrightarrow\sqrt[3]{2-x}=-2\Leftrightarrow x=10\) (tm)
Tập nghiệm \(S=\left\{10\right\}\)
ĐKXĐ : \(x\inℝ\)
Ta có : \(\dfrac{x^2+4x+5}{x^2-x+5}-\dfrac{3x}{x^2-3x+5}=1\)
\(\Leftrightarrow1+\dfrac{5x}{x^2-x+5}-\dfrac{3x}{x^2-3x+5}=1\)
\(\Leftrightarrow x.\left(\dfrac{5}{x^2-x+5}-\dfrac{3}{x^2-3x+5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\dfrac{5}{x^2-x+5}=\dfrac{3}{x^2-3x+5}\left(1\right)\end{matrix}\right.\)
Phương trình (1) <=> 5(x2 - 3x + 5) = 3(x2 - x + 5)
<=> 2x2 - 12x + 10 = 0
<=> x2 - 6x + 5 = 0
<=> (x - 1)(x - 5) = 0
<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Tập nghiệm \(S=\left\{0;1;5\right\}\)
\(\dfrac{x+2}{x-5}+3=\dfrac{6}{2-x}=\dfrac{-6}{x-2}\)
=>(x+2)(x-2)+3(x-5)(x-2)=-6(x-5)
=>x^2-4+3x^2-21x+30+6x-30=0
=>4x^2-15x-4=0
=>4x^2-16x+x-4=0
=>(x-4)(4x+1)=0
=>x=-1/4 hoặc x=4
Giải phương trình:[(x^2+x-5)/x]+[3x/(x^2+x-5)]+4=0
Đặt (x^2+x-5)/x = a ta có phương trình :
a + 3/a + 4 = 0 (a#0) <=> a^2 + 4a + 3 = 0 <=> a=-3 hoặc a=-1
sau đó thế vào giải là ra nha
( điều kiện xác định thì bạn tự làm nha )
Bài 1:
Đặt \(\hept{\begin{cases}S=x+y\\P=xy\end{cases}}\) hpt thành:
\(\hept{\begin{cases}S^2-P=3\\S+P=9\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}S^2-P=3\\S=9-P\end{cases}}\Leftrightarrow\left(9-P\right)^2-P=3\)
\(\Leftrightarrow\orbr{\begin{cases}P=6\Rightarrow S=3\\P=13\Rightarrow S=-4\end{cases}}\).Thay 2 trường hợp S và P vào ta tìm dc
\(\hept{\begin{cases}x=3\\y=0\end{cases}}\)và\(\hept{\begin{cases}x=0\\y=3\end{cases}}\)
Câu 3: ĐK: \(x\ge0\)
Ta thấy \(x-\sqrt{x-1}=0\Rightarrow x=\sqrt{x-1}\Rightarrow x^2-x+1=0\) (Vô lý), vì thế \(x-\sqrt{x-1}\ne0.\)
Khi đó \(pt\Leftrightarrow\frac{3\left[x^2-\left(x-1\right)\right]}{x+\sqrt{x-1}}=x+\sqrt{x-1}\Rightarrow3\left(x-\sqrt{x-1}\right)=x+\sqrt{x-1}\)
\(\Rightarrow2x-4\sqrt{x-1}=0\)
Đặt \(\sqrt{x-1}=t\Rightarrow x=t^2+1\Rightarrow2\left(t^2+1\right)-4t=0\Rightarrow t=1\Rightarrow x=2\left(tm\right)\)
a: ĐKXĐ: \(x\notin\left\{3;-5\right\}\)
\(\dfrac{x+5}{3}-\dfrac{x-3}{5}=\dfrac{5}{x-3}-\dfrac{3}{x+5}\)
=>\(\dfrac{5\left(x+5\right)-3\left(x-3\right)}{15}=\dfrac{5\left(x+5\right)-3\left(x-3\right)}{\left(x-3\right)\left(x+5\right)}\)
=>\(\dfrac{5x+25-3x+9}{15}=\dfrac{5x+25-3x+9}{\left(x-3\right)\left(x+5\right)}\)
=>(x-3)(x+5)=15
=>\(x^2+2x-15-15=0\)
=>\(x^2+2x-30=0\)
=>\(\left(x+1\right)^2=31\)
=>\(\left[{}\begin{matrix}x+1=\sqrt{31}\\x+1=-\sqrt{31}\end{matrix}\right.\Leftrightarrow x=-1\pm\sqrt{31}\left(nhận\right)\)
b: ĐKXĐ: \(x\in R\)
\(\sqrt{x^2+x+1}=3-x\)
=>\(\left\{{}\begin{matrix}x^2+x+1=\left(3-x\right)^2\\x< =3\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\x^2-6x+9=x^2+x+1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< =3\\-7x=-8\end{matrix}\right.\Leftrightarrow x=\dfrac{8}{7}\left(nhận\right)\)
c:
ĐKXĐ: \(x\in R\)
\(x^2-x+\sqrt{x^2-x+24}=18\)
=>\(x^2-x+24+\sqrt{x^2-x+24}=42\)
=>\(\left(\sqrt{x^2-x+24}\right)^2+\left(\sqrt{x^2-x+24}\right)-42=0\)
=>\(\left(\sqrt{x^2-x+24}+7\right)\left(\sqrt{x^2-x+24}-6\right)=0\)
=>\(\sqrt{x^2-x+24}-6=0\)
=>\(x^2-x+24=36\)
=>\(x^2-x-12=0\)
=>(x-4)(x+3)=0
=>\(\left[{}\begin{matrix}x-4=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=-3\left(nhận\right)\end{matrix}\right.\)