Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow9x^2-6x+1-10x-5+12x^2+6x-6x-3=x-1\)
\(\Leftrightarrow21x^2-17x-6=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1,075\\x=-0,266\end{cases}}\)
a) ( x - 1 )2 - ( x - 1 ).( x + 1 ) = 3x - 5
\(\Leftrightarrow\) ( x - 1 ).( x - 1 ) - ( x - 1 ) .( x + 1 ) = 3x - 5
\(\Leftrightarrow\)( x - 1 ) .( x - 1 - x - 1 ) - 3x + 5 = 0
\(\Leftrightarrow\) ( x - 1 ) .( -2 ) - 3x + 5 = 0
\(\Leftrightarrow\) - 2x + 2 - 3x + 5 = 0
\(\Leftrightarrow\)- 5x + 7 = 0
\(\Leftrightarrow\) - 5x = - 7
\(\Leftrightarrow\) x = \(\frac{7}{5}\)
Vậy phương trình có nghiệm là : x = \(\frac{7}{5}\)
c) x3 - 6x2 + 9x = 0
\(\Leftrightarrow\)x.( x2 - 6x + 9 ) = 0
\(\Leftrightarrow\) x.( x - 3 )2 = 0
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\\left(x-3\right)^2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-3=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
Vậy phương trình có nghiệm là : x = 0 , x = 3
\(x^4+x^3+6x^2=-5x-5\)
\(\Leftrightarrow x^4+x^3+6x^2+5x+5=0\)
\(\Leftrightarrow x^4+x^3+x^2+5x^2+5x+5=0\)
\(\Leftrightarrow x^2\left(x^2+x+1\right)+5\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\\x^2+5=0\end{matrix}\right.\) (vô nghiệm)
Vậy PT trên vô nghiệm
x^4+x^3+6x^2+5x+5 = 0 => (x^4+x^3+x^2)+(5x^2+5x+5) = 0 (x^2+x+1).(x^2+5) = 0 Vì x^2+x+1 và x^2+5 đều > 0 => pt vô nghiệm
a/\(\left(4x-1\right)\left(x+5\right)=x^2-25\Leftrightarrow4x^2+20x-x-5=x^2-25\Leftrightarrow3x^2+19x+20\)\(\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\-5\end{matrix}\right.\)
b/
\(2x^3-6x^2=x^2-3x\Leftrightarrow2x^3-6x^2-x^2+3x=0\Leftrightarrow2x^2\left(x-3\right)-x\left(x-3\right)=0\Leftrightarrow\left(2x^2-x\right)\left(x-3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}2x^2-x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}\\3\\0\end{matrix}\right.\)
c/\(x\left(x+3\right)^3-\frac{x}{4}\left(x+3\right)=0\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left[\left(x^2+6x+9\right)x-\frac{x}{4}\right]=0\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\frac{x}{4}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^3+6x^2+\frac{35}{4}x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\frac{5}{2}\\x=-\frac{7}{2}\end{matrix}\right.\)
d/\(\left(x-1\right)^2=\left(2x+5\right)^2\Leftrightarrow\left(x-1\right)^2-\left(2x+5\right)^2=0\Leftrightarrow\left(x-1+2x+5\right)\left(x-1-2x-5\right)=0\Leftrightarrow\left(3x+4\right)\left(-x-6\right)=0\Leftrightarrow\left[{}\begin{matrix}3x+4=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\frac{-4}{3}\\0\\-6\end{matrix}\right.\)
a, = 6x4+19x2+15
=6x4+9x2+10x2+15
=3x2(2x2+3)+5(2x2+3)
=(3x2+5)(2x2+3) Giải câu a vậy nha
a) Ta có: \(\left(2x+3\right)^2-\left(5+x\right)\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(2x+3+5+x\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(3x+8\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\3x+8=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-3\\3x=-8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{-8}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-3}{2};\frac{-8}{3}\right\}\)
b) Ta có: \(\left(2x+5\right)^2-\left(2x-5\right)^2=6x+8\)
\(\Leftrightarrow\left(2x+5+2x-5\right)\left(2x+5-2x+5\right)-6x-8=0\)
\(\Leftrightarrow40x-6x-8=0\)
\(\Leftrightarrow34x=8\)
\(\Leftrightarrow x=\frac{8}{34}=\frac{4}{17}\)
Vậy: \(x=\frac{4}{17}\)
c) Ta có: \(\left(4x+3\right)^2=4\left(x-1\right)^2\)
\(\Leftrightarrow16x^2+24x+9=4\left(x^2-2x+1\right)\)
\(\Leftrightarrow16x^2+24x+9-4x^2+8x-4=0\)
\(\Leftrightarrow12x^2+32x+5=0\)
\(\Leftrightarrow12x^2+2x+30x+5=0\)
\(\Leftrightarrow2x\left(6x+1\right)+5\left(6x+1\right)=0\)
\(\Leftrightarrow\left(6x+1\right)\left(2x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}6x+1=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=-1\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{-1}{6}\\x=\frac{-5}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{-1}{6};\frac{-5}{2}\right\}\)
d) Ta có: \(\left(7x-1\right)\left(3x-2\right)-49x^2+14x=1\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(49x^2-14x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2\right)-\left(7x-1\right)^2=0\)
\(\Leftrightarrow\left(7x-1\right)\left[3x-2-\left(7x-1\right)\right]=0\)
\(\Leftrightarrow\left(7x-1\right)\left(3x-2-7x+1\right)=0\)
\(\Leftrightarrow\left(7x-1\right)\left(-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}7x-1=0\\-4x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}7x=1\\-4x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\frac{1}{7}\\x=\frac{-1}{4}\end{matrix}\right.\)
Vậy: \(x\in\left\{\frac{1}{7};\frac{-1}{4}\right\}\)
\(\left(6x+5\right)^2\left(3x+2\right)\left(x+1\right)=1\)
<=> \(\left(36x^2+60x+25\right)\left(3x^2+5x+2\right)=1\)
đặt \(3x^2+5x+2=a\)
=> a(12a+1)=1 <=> 12a^2 + a -1=0 <=> (4a-1)(3a+1)=0
nên a=1/4 hoặc a=-1/3
sau đó bạn giải tiếp
chỉ cần tìm nghiệm trên máy tính là đc.
chúc bạn học giỏi
(6x + 5)2(3x + 2)(x + 1) = 1
<=>(6x + 5)2(6x+4)(6x+6)=12
<=>(6x + 5)2((6x + 5)2 - 1)=12
Bạn đặt ẩn phụ 6x+5 là y, ta có: y2(y2 - 1)=12
Giải y xong rồi tìm x
Tích mik nhé!