
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) / x + 5 / +3/ x - 2/ = / x + 4/ ( 1)
Lập bảng xét dấu , ta có :
x x-2 x+4 x+5 -5 -4 2 0 0 0 - - - + - - + + - + + + *) Với : x < - 5 , ta có:
( 1 ) ⇔ - x - 5 + 3( 2 - x) = - x - 4
⇔ - x - 5 + 6 - 3x = - x - 4
⇔ 1 - 4x = -x - 4
⇔ 3x = 5
⇔ x = \(\dfrac{5}{3}\) ( không thỏa mãn )
*) Với : - 5 ≤ x < - 4 , ta có :
( 1) ⇔ x + 5 + 3( 2 - x ) = - x - 4
⇔ x + 5 + 6 - 3x = -x - 4
⇔ 11 - 2x = - x - 4
⇔ x = 15 ( không thỏa mãn )
*) Với : - 4 ≤ x < 2 , ta có :
( 1) ⇔ x + 5 + 3( 2 - x) = x + 4
⇔ x + 5 + 6 - 3x = x + 4
⇔ 11 - 2x = x + 4
⇔ 3x = 7
⇔ x = \(\dfrac{7}{3}\) ( không thỏa mãn )
*) Với : x ≥ 2 , ta có :
( 1) ⇔ x + 5 + 3( x - 2) = x + 4
⇔ x + 5 + 3x - 6 = x + 4
⇔ 4x - 1 = x + 4
⇔3x = 5
⇔ x = \(\dfrac{5}{3}\) ( không thỏa mãn )
Vậy , PT trên vô nghiệm

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1

a, \(5\left|2x-1\right|-3=7\Leftrightarrow5\left|2x-1\right|=10\Leftrightarrow\left|2x-1\right|=2\)
TH1 : \(2x-1=2\Leftrightarrow x=\frac{3}{2}\)
TH2 : \(2x-1=-2\Leftrightarrow x=-\frac{1}{2}\)
b, \(\left(2x+3\right)\left(x-2\right)-x^2+4=0\Leftrightarrow\left(2x+3\right)\left(x-2\right)-\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(2x+3-x-2\right)=0\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\Leftrightarrow x=-1;x=2\)
c, \(\frac{2x-3}{2}< \frac{1-3x}{-5}\Leftrightarrow\frac{2x-3}{2}+\frac{1-3x}{5}< 0\)
\(\Leftrightarrow\frac{10x-15+2-6x}{10}< 0\Rightarrow4x-13< 0\Leftrightarrow x< \frac{13}{4}\)

ĐKXĐ: \(x\notin\left\{-3;1\right\}\)
Ta có: \(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\Leftrightarrow\frac{\left(2x-5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}-\frac{2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\frac{4}{\left(x-1\right)\left(x+3\right)}\)
Suy ra: \(\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)=4\)
\(\Leftrightarrow2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow-13x+5=4\)
\(\Leftrightarrow-13x=4-5=-1\)
hay \(x=\frac{1}{13}\)(nhận)
Vậy: \(S=\left\{\frac{1}{13}\right\}\)

\(\left(2x-2\right)^2=\left(x+1\right)^2+3.\left(x-2\right)\left(x+5\right)\)
\(\left(2x-2\right)^2-\left(x+1\right)^2=3.\left(x-2\right)\left(x+5\right)\)
\(\left(2x-2-x-1\right)\left(2x-2+x+1\right)=3.\left(x-2\right)\left(x+5\right)\)
\(\left(x-3\right)\left(3x-1\right)=3.\left(x-2\right)\left(x+5\right)\)
\(3x^2-x-9x+3=\left(3x-6\right)\left(x+5\right)\)
\(3x^2-10x+3=3x^2+15x-6x-30\)
\(3x^2-3x^2-10x+6x-15x+3+30=0\)
\(-19x+33=0\)
\(-19x=-33\)
\(x=\frac{33}{19}\)
\(\Leftrightarrow\left(2x-2\right)^2-\left(x+1\right)^2-3.\left(x-2\right).\left(x+5\right)=0\)
\(\Leftrightarrow4x^2-8x+4-\left(x^2+2x+1\right)-\left(3x-6\right).\left(x+5\right)=0\)
\(\Leftrightarrow4x^2-8x+4-x^2-2x-1-\left(3x^2+15x-6x-30\right)=0\)
\(\Leftrightarrow4x^2-8x+4-x^2-2x-1-3x^2-15x+6x+30=0\)
\(\Leftrightarrow-19x+33=0\)
\(\Leftrightarrow-19x=-33\)
\(\Leftrightarrow x=\frac{33}{19}\)
Vậy...............
\(\Leftrightarrow2x.\left(x+5\right)-\left(x+3\right)^2-\left(x-1\right)^2-20=0\)
\(\Leftrightarrow2x^2+10x-\left(x^2+6x+9\right)-\left(x^2-2x+1\right)-20=0\)
\(\Leftrightarrow2x^2+10x-x^2-6x-9-x^2+2x-1-20=0\)
\(\Leftrightarrow6x-30=0\)
\(\Leftrightarrow6x=30\)
\(\Leftrightarrow x=5\)
Vậy..........
Rút gọn thừa số chung
Đơn giản biểu thức
Rút gọn
Biệt thức
Biệt thức
Nghiệm
Kết quả là : 5
Vậy bạn tự kết luận