K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2016

1/ \(\left(x-1\right)\left(x^2-2x-2\right)=0\)

     \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\x^2-2x-2=0\left(2\right)\end{cases}}\)

   + Từ (1) => x = 1

   +  Từ (2) . Ta có: \(\Delta=\left(-2\right)^2-4\left(-2\right)=12\Rightarrow\sqrt{\Delta}=\sqrt{12}=2\sqrt{3}\)

       \(\Rightarrow\orbr{\begin{cases}x=\frac{2+2\sqrt{3}}{2}=1+\sqrt{3}\\x=\frac{2-2\sqrt{3}}{2}=1-\sqrt{3}\end{cases}}\)

                      Vậy \(x=\left\{1+\sqrt{3};1-\sqrt{3};1\right\}\)

2/ \(\left(x-1\right)^2\left(2x^2-x+2\right)=0\)

    \(\Rightarrow\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

    + Từ (1) => x = 1

    + Từ (2). Ta có: \(2x^2-x+2=2\left(x^2-\frac{1}{2}x+1\right)\)

                   \(=2\left(x^2-2.\frac{1}{4}x+\frac{1}{16}-\frac{1}{16}+1\right)\)

                    \(=2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]=2\left(x-\frac{1}{4}\right)^2+\frac{15}{8}>0\)

                     => pt (2) vô nghiệm

                                                                      Vậy x = 1

13 tháng 7 2016

a)(x-1)(x2-2x-2)=0

=>x-1=0 hoặc x2-2x-2=0

  • Với x-1=0 =>x=1
  • Với x2-2x-2=0 =>denta=(-2)2-(-4(1.2))=12

=>x1,2=(2±căn 12)/2=1- căn 3 hoặc căn 3+1

b)(x-1)2(2x2-x+2)=0

=>(x-1)2=0 hoặc 2x2-x+2=0

  • Với (x-1)2=0  =>x=1
  • Với 2x2-x+2=0 =>denta=(-1)2-4(2*2)=-15

Với Denta<0 =>vô nghiệm

Vậy x=1

NV
23 tháng 7 2021

a.

\(\left\{{}\begin{matrix}\left(x-1\right)^2-\left(y+1\right)^2=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1-y-1\right)\left(x-1+y+1\right)=0\\x+3y-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-2\right)\left(x+y\right)=0\\x+3y-5=0\end{matrix}\right.\)

TH1: \(\left\{{}\begin{matrix}x-y-2=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{11}{4}\\y=\dfrac{3}{4}\end{matrix}\right.\)

TH2: \(\left\{{}\begin{matrix}x+y=0\\x+3y-5=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{2}\\y=\dfrac{5}{2}\end{matrix}\right.\)

NV
23 tháng 7 2021

b.

\(\left\{{}\begin{matrix}xy-2x-y+2=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(y-2\right)-\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-1\right)\left(y-2\right)=0\\3x+y=8\end{matrix}\right.\)

TH1:

\(\left\{{}\begin{matrix}x-1=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=5\end{matrix}\right.\)

TH2:

\(\left\{{}\begin{matrix}y-2=0\\3x+y=8\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=2\end{matrix}\right.\)

5 tháng 10 2021

\(ĐK:-1\le x\le1\\ PT\Leftrightarrow13\left(1-2x^2\right)\sqrt{\left(1-x^2\right)\left(1+x^2\right)}+9\left(1+2x^2\right)\sqrt{\left(1+x^2\right)\left(1-x^2\right)}=0\\ \Leftrightarrow\sqrt{1-x^4}\left(13-26x^2+9+18x^2\right)=0\\ \Leftrightarrow\sqrt{1-x^4}\left(22-8x^2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}1-x^4=0\\22-8x^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(1+x^2\right)\left(1-x\right)\left(1+x\right)=0\\x^2=\dfrac{22}{8}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\left(tm\right)\\x=-1\left(tm\right)\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{\sqrt{11}}{2}\left(ktm\right)\\x=-\dfrac{\sqrt{11}}{2}\left(ktm\right)\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0

=>-2<m<4

 

2 tháng 1 2022

còn thiếu -b/a > 0  ạ

28 tháng 8 2021

\(a,\) Đặt \(x^2+2x=a\), pt trở thành:

\(a^2-3a+2=0\\ \Leftrightarrow\left[{}\begin{matrix}a=1\\a=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=0\left(1\right)\\x^2+2x-2=0\left(2\right)\end{matrix}\right.\)

\(\left[{}\begin{matrix}\Delta\left(1\right)=4+4=8\\\Delta\left(2\right)=4+8=12\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{8}}{2}\\x=\dfrac{-2+\sqrt{8}}{2}\end{matrix}\right.\\\left[{}\begin{matrix}x=\dfrac{-2-\sqrt{12}}{2}\\x=\dfrac{-2+\sqrt{12}}{2}\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1-\sqrt{2}\\x=-1+\sqrt{2}\\x=-1-\sqrt{3}\\x=-1+\sqrt{3}\end{matrix}\right.\)

\(b,\) Đặt \(x^2+x=b\), pt trở thành:

\(b\left(b+1\right)-6=0\\ \Leftrightarrow b^2+b-6=0\\ \Leftrightarrow\left[{}\begin{matrix}b=2\\b=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2+x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\\x\in\varnothing\left[x^2+x+3=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)

\(d,x^4-2x^3+x=2\\ \Leftrightarrow x^4-2x^3+x-2=0\\\Leftrightarrow\left(x^3+1\right)\left(x-2\right)=0 \\ \Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x^2+x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x^2+x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\\x\in\varnothing\left[x^2+x+1=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\right]\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

a. 

PT $\Leftrightarrow (x^2+2x)^2-(x^2+2x)-2[(x^2+2x)-1]=0$

$\Leftrightarrow (x^2+2x)(x^2+2x-1)-2(x^2+2x-1)=0$

$\Leftrightarrow (x^2+2x-1)(x^2+2x-2)=0$

$\Leftrightarrow x^2+2x-1=0$ hoặc $x^2+2x-2=0$

$\Leftrightarrow x=-1\pm \sqrt{2}$ hoặc $x=-1\pm \sqrt{3}$

b.

PT $\Leftrightarrow (x^2+x)^2+(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)^2-2(x^2+x)+3(x^2+x)-6=0$

$\Leftrightarrow (x^2+x)(x^2+x-2)+3(x^2+x-2)=0$

$\Leftrightarrow (x^2+x-2)(x^2+x+3)=0$

$\Leftrightarrow x^2+x-2=0$ (chọn) hoặc $x^2+x+3=0$ (loại do $x^2+x+3=(x+0,5)^2+2,75>0$)

$\Leftrightarrow x=-1\pm \sqrt{3}$

c. Nghiệm khá xấu. Bạn coi lại đề.

d.

PT $\Leftrightarrow x^3(x-2)+(x-2)=0$

$\Leftrightarrow (x^3+1)(x-2)=0$

$\Leftrightarrow x^3+1=0$ hoặc $x-2=0$

$\Leftrightarrow x=-1$ hoặc $x=2$

 

b: \(\Leftrightarrow\left(x^2-2x+1-1\right)^2-2\left(x-1\right)^2-1=0\)

\(\Leftrightarrow\left[\left(x-1\right)^2-1\right]^2-2\left(x-1\right)^2-1=0\)

\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2+1-2\left(x-1\right)^2-1=0\)

\(\Leftrightarrow\left(x-1\right)^2\cdot\left(x-3\right)\left(x+1\right)=0\)

hay \(x\in\left\{1;3;-1\right\}\)

a: \(\Leftrightarrow2x^3-3x-10=-2\left(8-12x+6x^2-x^3\right)\)

\(\Leftrightarrow2x^3-3x-10=-16+24x-12x^2+2x^3\)

\(\Leftrightarrow-3x-10+16-24x+12x^2=0\)

=>\(12x^2-27x+6=0\)

hay \(x\in\left\{2;\dfrac{1}{4}\right\}\)

19 tháng 12 2018

\(x^4+\left(x-1\right)\left(x^2-2x+2\right)=0\)

\(\Leftrightarrow x^4+x^3-3x^2+4x-2=0\)

\(\Leftrightarrow x^2\left(x^2-x+1\right)+2x\left(x^2-x+1\right)-2\left(x^2-x+1\right)=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(x^2+2x-2\right)=0\)

đến đây tự giải nhé

Bài 2: 

a: \(\Leftrightarrow\left(x^2-3x+2\right)\left(x^2-3x+3\right)=0\)

=>x^2-3x+2=0

=>x=2 hoặc x=1

b: \(\Leftrightarrow\left(\left|x\right|\right)^2-\left|x\right|+m=0\)

Để phương trình có nghiệm thì \(\text{Δ}>=0\)

=>1-4m>=0

=>m<=1/4

Để phương trình vô nghiệm thì Δ<0

=>m>1/4

c: TH1: m=1

=>-2x+2=0

=>x=1

TH2: m<>1

\(\text{Δ}=\left(-2\right)^2-4\left(1-m\right)\cdot2m\)

\(=4+8m\left(m-1\right)\)

\(=8m^2-8m+4\)

Để phương trình có nghiệm thì Δ>=0

=>\(m\in R\)