\(x+\sqrt{x-1}=12\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

15 tháng 12 2018

\(x^2+2x+1-\left(x+1\right)+2\sqrt{x+1}.6-36=0\)

\(\left(x+1\right)^2-\left(\sqrt{x+1}-6\right)^2=0\)

\(\left(x-\sqrt{x+1}+7\right)\left(x+\sqrt{x+1}-5\right)=0\)

\(\left[{}\begin{matrix}x-\sqrt{x+1}+7=0\\x+\sqrt{x+1}-5=0\end{matrix}\right.\)

12 tháng 6 2018

a) Ta có: \(\sqrt{x-2}+\sqrt{4x-8}=12\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4}.\sqrt{x-2}=12\)

\(\Rightarrow\sqrt{x-2}\left(2+1\right)=12\)

\(\Rightarrow\sqrt{x-2}=4\)

\(\Rightarrow x-2=4^2\Rightarrow x=18\)

b) \(\sqrt{x-1}-\sqrt{x-4}=1\)

\(\Rightarrow\left(\sqrt{x-1}-\sqrt{x-4}\right)^2=1\)

\(\Rightarrow\left(\sqrt{x-1}\right)^2-2.\sqrt{x-1}.\sqrt{x-4}+\left(\sqrt{x-4}\right)^2=1\)

\(\Rightarrow x-1-2.\sqrt{\left(x-1\right)\left(x-4\right)}+x-4=1\)

\(\Rightarrow2x-2\sqrt{\left(x-1\right)\left(x-4\right)}-6=0\)

\(\Rightarrow2\left(x-\sqrt{\left(x-1\right)\left(x-4\right)}-3\right)=0\)

\(\Rightarrow x-\sqrt{\left(x-1\right)\left(x-4\right)}-3=0\)

....

14 tháng 10 2017

\(\hept{\begin{cases}\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)=12\\\left(\sqrt{x}+\sqrt{y}\right)\left(x+y-\sqrt{xy}\right)=28\end{cases}}\)

\(\Rightarrow\sqrt{x}+\sqrt{y}=\frac{12}{\sqrt{xy}}\)

\(\Rightarrow\frac{12}{\sqrt{xy}}\left(x+y-\sqrt{xy}\right)=28\)

\(\Leftrightarrow\frac{x+y-\sqrt{xy}}{\sqrt{xy}}=\frac{7}{3}\)

\(\Leftrightarrow\frac{x+y}{\sqrt{xy}}=\frac{4}{3}\)

tc \(x+y\ge2\sqrt{xy}\)

\(\Rightarrow\frac{x+y}{\sqrt{xy}}\ge2>\frac{4}{3}\)=>pt vô nghiệm

14 tháng 10 2017

Lời giải:

Đặt \(\left(\sqrt{x},\sqrt{y}\right)=\left(a,b\right)\)

Khi đó hệ phương trình chuyển về: \(\hept{\begin{cases}ab\left(a+b\right)=12\\a^3+b^3=28\end{cases}}\Leftrightarrow\hept{\begin{cases}ab\left(a+b\right)=12\\\left(a+b\right)^3-3ab\left(a+b\right)=28\end{cases}}\)

Lấy 3 lần PT (1) +PT (2) thu được: \(\left(a+b\right)^3=28+36=64\Rightarrow a+b=4\)

Mà \(ab\left(a+b\right)=12\Rightarrow ab=3\)

Khi đó, áp dụng định lý Viete đảo thì \(a,b\) là nghiệm của pt: \(x^2-4x+3=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=3\end{cases}}\)

Hay \(\left(a,b\right)=\left(1,3\right)\) và hoán vị hay \(\left(x,y\right)=\left(1,9\right)\) và hoán vị.

25 tháng 7 2017

a)\(x^2+x+12\sqrt{x+1}=36\)

\(pt\Leftrightarrow x^2+x-12+12\sqrt{x+1}-24=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x+1\right)-576}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4\right)+\frac{144\left(x-3\right)}{12\sqrt{x+1}+24}=0\)

\(\Leftrightarrow\left(x-3\right)\left(x+4+\frac{144}{12\sqrt{x+1}+24}\right)=0\)

Dễ thấy: \(x+4+\frac{144}{12\sqrt{x+1}+24}>0\forall x\ge-1\)

\(\Rightarrow x-3=0\Rightarrow x=3\)

b)\(x+\sqrt{x-2}=2\sqrt{x-1}\)

\(pt\Leftrightarrow x-2+\sqrt{x-2}=2\sqrt{x-1}-2\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}=2\left(\sqrt{x-1}-1\right)\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-1-1}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow x-2+\frac{x-2}{\sqrt{x-2}}-2\cdot\frac{x-2}{\sqrt{x-1}+1}=0\)

\(\Leftrightarrow\left(x-2\right)\left(1+\frac{1}{\sqrt{x-2}}-\frac{2}{\sqrt{x-1}+1}\right)=0\)

Suy ra x-2=0=>x=2

c)Áp dụng BĐT \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\) ta có:

\(VT=\sqrt{x+3}+\sqrt{1-x}\)

\(\ge\sqrt{x+3+1-x}=\sqrt{4}=2=VP\)

Xảy ra khi \(\orbr{\begin{cases}x=-3\\x=1\end{cases}}\)

9 tháng 7 2018

1) ĐK: \(x\ge-1\)

\(PT\Leftrightarrow12\left(\sqrt{x+1}-2\right)+x^2+x-12=0\)

\(\Leftrightarrow12.\frac{x-3}{\sqrt{x+1}+2}+\left(x-3\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(\frac{12}{\sqrt{x+1}+2}+x+4\right)=0\)

\(\Leftrightarrow x=3\text{ hoặc }\frac{12}{\sqrt{x+1}+2}+x+4=0\) (*)

VT của (*) luôn dương với \(x\ge-1\)

=> x = 3