\(x=\left(2004+\sqrt{x}\right)\left(1-\sqrt{1-\sqrt{x}}\right)^2\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 11 2019

a/ ĐKXĐ: ...

Đặt \(\sqrt{x+2006}=a\ge0\Rightarrow a^2-x=2006\)

Pt trở thành:

\(x^2+a=a^2-x\)

\(\Leftrightarrow x^2-a^2+x+a=0\)

\(\Leftrightarrow\left(x+a\right)\left(x-a+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=-x\\a=x+1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x+2006}=-x\left(x\le0\right)\\\sqrt{x+2006}=x+1\left(x\ge-1\right)\end{matrix}\right.\) (1)

\(\Leftrightarrow\left[{}\begin{matrix}x+2006=x^2\\x+2006=\left(x+1\right)^2\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-2006=0\\x^2+x-2005=0\end{matrix}\right.\)

Nhớ loại nghiệm của từng pt phù hợp với (1)

NV
8 tháng 11 2019

b/ ĐKXĐ: ...

Đặt \(\sqrt{1-\sqrt{x}}=a\Rightarrow\sqrt{x}=1-a^2\Rightarrow x=\left(1-a^2\right)^2\) (với \(0\le a\le1\))

\(\left(1-a^2\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left(1+a\right)^2\left(1-a\right)^2=\left(2005-a^2\right)\left(1-a\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}a=1\\\left(1-a\right)\left(1+a\right)^2=2005-a^2\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow a^3-a+2004=0\)

Do \(0\le a\le1\Rightarrow a^3-a+2004>0\Rightarrow\) pt vô nghiệm

Vậy pt có nghiệm duy nhất \(x=0\)

13 tháng 2 2020

a) ĐKXD:...

\(pt\Leftrightarrow\left(\sqrt{x+2}+\sqrt{x-2}\right)^2=6-2x\)

\(\Leftrightarrow\sqrt{x+2}+\sqrt{x-2}=\sqrt{6-2x}\)

Đến đây dễ rồi

13 tháng 2 2020

bước đầu bạn làm sai r. nó nằm trong căn nên ko phải bình phương nên ko thể biến đổi thành tổng bình phương được

24 tháng 9 2018

Sao lắm dấu bằng thế

26 tháng 9 2018

hack não người xem

21 tháng 3 2016

<=><=>(X+1)(Y+1)=6 và (x+1)^3+(y+1)^3=35đặt X+1;Y+1 biến đổi vế 2 giải ra đc(1;2);(2;1)

b,<=>\(\left[\sqrt{2}+1\right]^x+\left[\sqrt{2}-1\right]^x=6\)

<=>\(2\sqrt{2}^x+2=6\)

<=>x=2

27 tháng 1 2018

Đặt \(\sqrt{x}+\sqrt{1-x}=t\)ĐK: bn tự tìm nhá

\(t^2=1+2\sqrt{x\left(1-x\right)}\)\(\Rightarrow2\sqrt{x\left(1-x\right)}=t^2-1\)

\(2.\sqrt[4]{x\left(1-x\right)}=\sqrt{t^2-1}\)

Từ trên Suy ra: \(t-\left(t^2-1\right)-\sqrt{t^2-1}=...\)

đến đây bn tự giải đi , mình lười lắm mà nhớ Tk cho mình nha ^.^ thanks

27 tháng 1 2018

giải sai chỗ này nek 

\(\sqrt[4]{x\left(1-4\right)}=\sqrt{\frac{t^2-1}{2}}\)

NV
6 tháng 8 2020

1/ ĐKXĐ: ...

\(\Leftrightarrow x=2016-2015\sqrt{x}-x\)

\(\Leftrightarrow2x+2015\sqrt{x}-2016=0\)

Đặt \(\sqrt{x}=t\ge0\)

\(\Rightarrow2t^2+2015t-2016=0\)

Nghiệm xấu kinh khủng, bạn tự giải

2. ĐKXĐ: ...

\(x^2+4x+4+4y^2-8y+4=4xy+13\)

\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2y=1\\x-2y=-5< 0\left(l\right)\end{matrix}\right.\) \(\Rightarrow x=2y+1\)

Thay xuống dưới:

\(\sqrt{\frac{\left(x+y\right)\left(x-2y\right)}{x-y}}+\sqrt{x+y}=\frac{2}{\sqrt{\left(x-y\right)\left(x+y\right)}}\)

\(\Leftrightarrow\left(x+y\right)\sqrt{x-2y}+\left(x+y\right)\sqrt{x-y}=2\)

\(\Leftrightarrow3y+1+\left(3y+1\right)\sqrt{y+1}=2\)

\(\Leftrightarrow6y+\left(3y+1\right)\left(\sqrt{y+1}-1\right)=0\)

\(\Leftrightarrow6y+\frac{\left(3y+1\right)y}{\sqrt{y+1}+1}=0\)

\(\Leftrightarrow y\left(6+\frac{3y+1}{\sqrt{y+1}+1}\right)=0\Rightarrow y=0\Rightarrow x=1\)

27 tháng 7 2017

đặt ản phụ giải hệ pt

27 tháng 7 2017

là sao bạn giải đc ko

24 tháng 12 2018

NX: x = 0 là 1 nghiệm của pt

Nếu \(x\ne0\)

\(ĐKXĐ:x\ge3\)

Ta có : \(\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}=\sqrt{x\left(x-3\right)}\)

      \(\Leftrightarrow\sqrt{x\left(x+1\right)}-\sqrt{x\left(x+2\right)}-\sqrt{x\left(x-3\right)}=0\)(1)

Vì mỗi ngoặc trong căn đều dương nên ta tách ra được

 \(\left(1\right)\Leftrightarrow\sqrt{x}\left(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}\right)=0\)

        \(\Leftrightarrow\sqrt{x}=0\left(h\right)\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)

*Nếu \(\sqrt{x}=0\)

\(\Rightarrow x=0\)(loại vì ko thỏa mãn ĐKXĐ)

*Nếu \(\sqrt{x+1}-\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}=\sqrt{x+2}+\sqrt{x-2}\)

Dễ thấy VT < VP

=> pt vô nghiệm

Vậy pt có 1 nghiệm duy nhất x = 0

24 tháng 12 2018

Bổ sung chỗ ĐKXĐ nhé !
\(ĐKXĐ:\orbr{\begin{cases}x\ge3\\x\le-2\end{cases}}\)

Còn phần tiếp theo làm tương tự !