Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : x4+3x3+4x2+3x+1=0
⇔ ( x4 + x3 ) + ( 2x3 + 2x2 ) + ( 2x2 + 2x ) + ( x + 1 ) = 0
⇔ x3 ( x + 1 ) + 2x2 ( x + 1 ) + 2x ( x+1 ) + ( x + 1 ) =0
⇔ ( x + 1 ) ( x3 + 2x2 + 2x + 1 ) = 0
⇔ ( x + 1 ) [ ( x3 + 1 ) + ( 2x2 + 2x ) ] = 0
⇔ ( x + 1 ) [ (x + 1 ) ( x2 - x +1 ) + 2x ( x + 1 ) ] =0
⇔ ( x +1 ) ( x + 1 ) ( x2 + x +1 ) =0
⇒ \(\left[{}\begin{matrix}x+1=0\\x^{2^{ }}+x+1=0\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x=-1\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(VoLy\right)\end{matrix}\right.\)
Vậy x = -1
x4+3x3+4x2+3x+1=0
⇔(x4+2x3+x2)+(x3+2x2+1)+(x2+2x+1)=0
⇔x2(x2+2x+1)+x(x2+2x+1)+(x2+2x+1)=0
⇔x2(x+1)2+x(x+1)2+(x+1)2=0
⇔(x+1)2(x2+x+1)=0
Vì x2+x+1=x2+x+\(\dfrac{1}{4}\)+\(\dfrac{3}{4}\)=(x+\(\dfrac{1}{2}\))2+\(\dfrac{3}{4}\)>0 nên phương trình đã cho tương đương:
(x+1)2=0 ⇔(x+1)(x+1)=0 ⇔x=-1.
1.
a/ \(\Leftrightarrow\left(x+1\right)\left(x^2+3x+2\right)+\left(x-1\right)\left(x^2-3x+2\right)-12=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+2\right)+3x\left(x+1\right)-3x\left(x-1\right)+\left(x-1\right)\left(x^2+2\right)-12=0\)
\(\Leftrightarrow2x\left(x^2+2\right)+6x^2-12=0\)
\(\Leftrightarrow x^3+3x^2+2x-6=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+4x+6\right)=0\Rightarrow x=1\)
b/ Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)
\(x^2+\frac{1}{x^2}+3\left(x+\frac{1}{x}\right)+4=0\)
Đặt \(x+\frac{1}{x}=t\Rightarrow x^2+\frac{1}{x^2}=t^2-2\)
\(t^2-2+3t+4=0\Rightarrow t^2+3t+2=0\Rightarrow\left[{}\begin{matrix}t=-1\\t=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\frac{1}{x}=-1\\x+\frac{1}{x}=-2\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x^2+x+1=0\left(vn\right)\\x^2+2x+1=0\end{matrix}\right.\) \(\Rightarrow x=-1\)
1c/
\(\Leftrightarrow x^5+x^4-2x^4-2x^3+5x^3+5x^2-2x^2-2x+x+1=0\)
\(\Leftrightarrow x^4\left(x+1\right)-2x^3\left(x+1\right)+5x^2\left(x+1\right)-2x\left(x+1\right)+x+1=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^4-2x^3+5x^2-2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x^4-2x^3+5x^2-2x+1=0\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^4-2x^3+x^2+x^2-2x+1+3x^2=0\)
\(\Leftrightarrow\left(x^2-x\right)^2+\left(x-1\right)^2+3x^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2-x=0\\x-1=0\\x=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại x thỏa mãn
Vậy pt có nghiệm duy nhất \(x=-1\)
Ta có : \(x^4-3x^3+4x^2-3x+10.\)
\(=\left(x^4-2x^3+x^2\right)-\left(x^3-3x^2+3x-1\right)+9\)
\(=x^2\left(x-1\right)^2-\left(x-1\right)^3+9\)
\(=\left(x-1\right)^2\left(x^2-x+1\right)+9\)
Mà \(\left(x-1\right)^2\ge0\)
\(x^2-x+1=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
\(\Rightarrow\left(x-1\right)^2\left(x^2-x+1\right)\ge0\)
\(\Rightarrow\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)
Dấu " = " xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Vậy GTNN cảu \(x^4-3x^3+4x^2-3x+10.\)là 9 <=> \(x=1\)
\(a,\left(3x-7\right)^2=\left(2-2x\right)^2\)
a,\(=>\left(3x-7\right)^2-\left(2-2x\right)^2=0\)
\(< =>\left(3x-7+2-2x\right)\left(3x-7-2+2x\right)=0\)
\(< =>\left(x-5\right)\left(5x-9\right)=0=>\left[{}\begin{matrix}x=5\\x=1,8\end{matrix}\right.\)
b, \(x^2-8x+6=0< =>x^2-2.4x+16-10=0\)
\(< =>\left(x-4\right)^2-\sqrt{10}^2=0\)
\(=>\left(x-4+\sqrt{10}\right)\left(x-4-\sqrt{10}\right)=0\)
\(=>\left[{}\begin{matrix}x=4-\sqrt{10}\\x=4+\sqrt{10}\end{matrix}\right.\)
c, \(4x^2-2x-1=0\)
\(< =>\left(2x\right)^2-2.2.\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{5}{4}=0\)
\(=>\left(2x-\dfrac{1}{2}\right)^2-\left(\dfrac{\sqrt{5}}{2}\right)^2=0\)
\(=>\left(2x+\dfrac{-1+\sqrt{5}}{2}\right)\left(2x-\dfrac{1+\sqrt{5}}{2}\right)=0\)
\(=>\left[{}\begin{matrix}x=\dfrac{1-\sqrt{5}}{4}\\x=\dfrac{1+\sqrt{5}}{4}\end{matrix}\right.\)
d,\(x^4-4x^2-32=0\)
đặt \(t=x^2\left(t\ge0\right)=>t^2-4t-32=0\)
\(< =>t^2-2.2t+4-6^2=0\)
\(=>\left(t-2\right)^2-6^2=0=>\left(t-8\right)\left(t+4\right)=0\)
\(=>\left[{}\begin{matrix}t=8\left(tm\right)\\t=-4\left(loai\right)\end{matrix}\right.\)\(=>x=\pm\sqrt{8}\)
`a)16x^2-24x+9=25`
`<=>(4x-3)^2=25`
`+)4x-3=5`
`<=>4x=8<=>x=2`
`+)4x-3=-5`
`<=>4x=-2`
`<=>x=-1/2`
`b)x^2+10x+9=0`
`<=>x^2+x+9x+9=0`
`<=>x(x+1)+9(x+1)=0`
`<=>(x+1)(x+9)=0`
`<=>` \(\left[ \begin{array}{l}x=-9\\x=-1\end{array} \right.\)
`c)x^2-4x-12=0`
`<=>x^2+2x-6x-12=0`
`<=>x(x+2)-6(x+2)=0`
`<=>(x+2)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=-2\\x=6\end{array} \right.\)
`d)x^2-5x-6=0`
`<=>x^2+x-6x-6=0`
`<=>x(x+1)-6(x+1)=0`
`<=>(x+1)(x-6)=0`
`<=>` \(\left[ \begin{array}{l}x=6\\x=-1\end{array} \right.\)
`e)4x^2-3x-1=0`
`<=>4x^2-4x+x-1=0`
`<=>4x(x-1)+(x-1)=0`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-\dfrac14\end{array} \right.\)
`f)x^4+4x^2-5=0`
`<=>x^4-x^2+5x^2-5=0`
`<=>x^2(x^2-1)+5(x^2-1)=0`
`<=>(x^2-1)(x^2+5)=0`
Vì `x^2+5>=5>0`
`=>x^2-1=0<=>x^2=1`
`<=>` \(\left[ \begin{array}{l}x=1\\x=-1\end{array} \right.\)
Đề lỗi quá. Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để được hỗ trợ tốt hơn.
a.
$x^4-25x^3=0$
$\Leftrightarrow x^3(x-25)=0$
\(\Leftrightarrow \left[\begin{matrix} x^3=0\\ x-25=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=0\\ x=25\end{matrix}\right.\)
b.
$(x-5)^2-(3x-2)^2=0$
$\Leftrightarrow (x-5-3x+2)(x-5+3x-2)=0$
$\Leftrightarrow (-2x-3)(4x-7)=0$
\(\Leftrightarrow \left[\begin{matrix}
-2x-3=0\\
4x-7=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix}
x=\frac{-3}{2}\\
x=\frac{7}{4}\end{matrix}\right.\)
c.
$x^3-4x^2-9x+36=0$
$\Leftrightarrow x^2(x-4)-9(x-4)=0$
$\Leftrightarrow (x-4)(x^2-9)=0$
$\Leftrightarrow (x-4)(x-3)(x+3)=0$
\(\Leftrightarrow \left[\begin{matrix} x-4=0\\ x-3=0\\ x+3=0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=4\\ x=3\\ x=-3\end{matrix}\right.\)
d. ĐK: $x\neq 0$
$(-x^3+3x^2-4x):(\frac{-1}{2}x)=0$
$\Leftrightarrow x(-x^2+3x-4):(\frac{-1}{2}x)=0$
$\Leftrightarrow -2(-x^2+3x-4)=0$
$\Leftrightarrow x^2-3x+4=0$
$\Leftrightarrow (x-1,5)^2=-1,75< 0$ (vô lý)
Vậy pt vô nghiệm.
đặt P(x)=x^4+3x^3+4x^2+3x+1
đặt y=x2+1
=>y2=(x2+1)2
=>y2=x4+2x2+1
=>P(x)=x4+2x2+1+3x3+2x2+3x
=x4+2x2+1+3x3+3x+2x2
=x4+2x2+1+3x(x2+1)+2x2
=y2+3xy+2x2
=y2+xy+2xy+2x2
=y(y+x)+2x(y+x)
=(y+x)(y+2x)
thay y=x2+1 ta được:
P(x)=(x2+1+x)(x2+1+2x)
=>x^4+3x^3+4x^2+3x+1=0
<=>(x2+1+x)(x2+1+2x)=0
<=>x2+1+x=0 hoặc x2+1+2x=0
mà x2\(\ge\)|x|
nên x2+x\(\ge\)0
=>x2+1+x>0
nên x2+1+2x=0
<=>(x+1)2=0
<=>x+1=0
<=>x=-1