Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Pt\Leftrightarrow x^4+x^2+\dfrac{1}{4}=x^2+2013-\sqrt{x^2+2013}+\dfrac{1}{4}\\ \Leftrightarrow\left(x^2+\dfrac{1}{2}\right)^2=\left(\sqrt{x^2+2013}-\dfrac{1}{2}\right)^2\\ \Rightarrow x^2+1=\sqrt{x^2+2013}\Leftrightarrow x^4+x^2-2012=0\\ \Leftrightarrow x_{1,2}=\pm\sqrt{\dfrac{-1+\sqrt{8049}}{2}}\)
\(\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24=0\)
đặt \(x^2+5x+5=t\)
\(\Leftrightarrow t^2-25=0\Rightarrow\left\{{}\begin{matrix}t=5\\t=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)
\(x^4-4x^2+8x+4=0\)
\(\Leftrightarrow x^2\left(x^2-4\right)+8\left(x+2\right)=0\)
\(\Leftrightarrow x^2\left(x-2\right)\left(x+2\right)+8\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^3-2x^2+8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x^3-2x^2+8=0\end{array}\right.\)
Tới đây tự giải nhé :)
Đầu tiên ta phân tích : \(x^4+4=\left(x^4+4x^2+4\right)-4x^2=\left(x^2+2\right)^2-\left(2x\right)^2\)
\(=\left(x^2-2x+2\right)\left(x^2+2x+2\right)\)
Suy ra pt : \(\left(x^2-2x+2\right)\left(x^2+2x+2\right)-4x\left(x-2\right)=0\)
Nhận thấy x = 0 không là nghiệm của pt, do đó chia cả hai vế của pt cho \(x^4\ne0\) được :
\(\left(1-\frac{2}{x}+\frac{2}{x^2}\right)\left(1+\frac{2}{x}+\frac{2}{x^2}\right)-4\left(\frac{1}{x^2}-\frac{2}{x^3}\right)=0\)
Đặt \(t=\frac{2}{x}\) , pt trở thành : \(\left(1-2t+2t^2\right)\left(1+2t+2t^2\right)-4\left(t^2-2t^3\right)=0\)
Tới đây thử giải pt với ẩn t xem có đc k
Lời giải:
1. ĐKXĐ: $x\geq \frac{-5+\sqrt{21}}{2}$
PT $\Leftrightarrow x^2+5x+1=x+1$
$\Leftrightarrow x^2+4x=0$
$\Leftrightarrow x(x+4)=0$
$\Rightarrow x=0$ hoặc $x=-4$
Kết hợp đkxđ suy ra $x=0$
2. ĐKXĐ: $x\leq 2$
PT $\Leftrightarrow x^2+2x+4=2-x$
$\Leftrightarrow x^2+3x+2=0$
$\Leftrightarrow (x+1)(x+2)=0$
$\Leftrightarrow x+1=0$ hoặc $x+2=0$
$\Leftrightarrow x=-1$ hoặc $x=-2$
3.
ĐKXĐ: $-2\leq x\leq 2$
PT $\Leftrightarrow \sqrt{2x+4}=\sqrt{2-x}$
$\Leftrightarrow 2x+4=2-x$
$\Leftrightarrow 3x=-2$
$\Leftrightarrow x=\frac{-2}{3}$ (tm)
Ta có : \(x^4+2012x^2-2013=0\)
=> \(x^4-x^2+2013x^2-2013=0\)
=> \(x^2\left(x^2-1\right)+2013\left(x^2-1\right)=0\)
=> \(\left(x^2+2013\right)\left(x^2-1\right)=0\)
=> \(\left(x^2+2013\right)\left(x-1\right)\left(x+1\right)=0\)
Mà \(x^2+2013>0\)
=> \(x^2-1=0\)
=> \(x=\pm1\)
Vậy phương trình có nghiệm là \(S=\left\{1,-1\right\}\)
Lời giải:
$x^4+2012x^2-2013=0$
$\Leftrightarrow x^4-x^2+2013x^2-2013=0$
$\Leftrightarrow x^2(x^2-1)+2013(x^2-1)=0$
$\Leftrightarrow (x^2-1)(x^2+2013)=0$
Dễ thấy $x^2+2013\geq 2013>0$ với mọi $x\in\mathbb{R}$ nên $x^2-1=0$
$\Rightarrow x=\pm 1$