K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Leftrightarrow\left(x^2-12x-6\right)\left(x^2-4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-12x-6=0\\x^2-4x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left(x-6\right)^2=42\\\left(x-2\right)^2=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6\in\left\{\sqrt{42};-\sqrt{42}\right\}\\x-2\in\left\{\sqrt{2};-\sqrt{2}\right\}\end{matrix}\right.\Leftrightarrow x\in\left\{\sqrt{42}+6;-\sqrt{42}+6;\sqrt{2}+2;2-\sqrt{2}\right\}\)

4 tháng 2 2022

Đây đích thực có phải là lớp 1 ko bn?

26 tháng 2 2022

cho mk hỏi một chút là đây đích thực có phải lớp 1 ko ak?

3 tháng 9 2018

Đây không phải toán lớp 1 đâu bạn

Tớ không biết vì tớ mới lớp 5

K mk nha

*Mio*

3 tháng 9 2018

Tự đăng bài rồi tự làm luôn à bn .

Đây ko pk là Toán lớp nhá 

Học tôt nhé bn

# MissyGirl #

Chuyên mục học giỏi mỗi ngày Phần 2  : cách giải pt bậc 2 tốc độ thần thánh định lí của chúa  : biết thức dentacác ngươi ko cần biết denta là gì , hay tại sao lại gọi nó là denta ... bala balacác ngươi chỉ cần hiều là  : denta là cách làm tắt ko bị trừ điểm okaychú ý : denta chỉ áp dụng cho pt bậc 2 ,  nếu là pt bậc 4 thì ta sẽ đứa nó về dạng A^2=B^2  = cách tính denta + thêm tham số . bala...
Đọc tiếp

Chuyên mục học giỏi mỗi ngày 

Phần 2  : cách giải pt bậc 2 tốc độ thần thánh 

định lí của chúa  : biết thức denta

các ngươi ko cần biết denta là gì , hay tại sao lại gọi nó là denta ... bala bala

các ngươi chỉ cần hiều là  : denta là cách làm tắt ko bị trừ điểm okay

chú ý : denta chỉ áp dụng cho pt bậc 2 ,  nếu là pt bậc 4 thì ta sẽ đứa nó về dạng A^2=B^2  = cách tính denta + thêm tham số . bala bla

còn gặp pt bậc 3 thì nó rất là khó đối với mấy bạn học kém , nên mình sẽ chỉ dạy giải pt bậc 2 cả 4 

ta có \(\Delta=B^2-4AC\)

vd 1  denta <0   \(16x^2+20x+30=0\)  " A là 16  . B là 20 , C là 30 "

nhớ ko dc lấy ẩn x ok , nếu trường hợp có tham số ví dụ  M chẳng hạn thì ta lấy cả M nhưng ko dc lấy ẩn x okay 

\(\Delta=B^2-4ac=20^2-4.16.30=400-1920< 0\)  , denta nhỏ hơn 0 pt vô nghiệm "

VD 2  denta >0 

\(x^2-x-1=0\)

\(\hept{\begin{cases}a=1\\b=-1\\c=-1\end{cases}\Leftrightarrow\Delta=b^2-4ac=1^2-\left(4.-1\right)=5>0}\)

khi denta lớn hơn 0 pt có 2 nghiêm phân biệt

\(\orbr{\begin{cases}x,1=\frac{-b+\sqrt{5}}{2a}=\frac{-1+5}{2}\\x,2=\frac{1-5}{2}\end{cases}}\)

 

, denta = 0 , pt có 2 nghiêm phân biệt , trường hợp này rất ít xảy ra  nên mình ko nói 

  các ngươi có thể hiểu rõ hơn = cách lên ytb ghi  denta và ứng dụng

2
5 tháng 7 2018

hay v: ))

5 tháng 7 2018

denta= 0 pt có nghiệm kép nha . chúa gõ nhầm :v

12 tháng 6 2019

Dễ thấy \(2^x=y^2-153\)có Vế phải luôn nguyên nên \(2^x\in Z\Rightarrow x\in N\)

\(2^x+12^2=y^2-3^2\Leftrightarrow2^x+153=y^2.\)(1)

Nếu x là số lẻ , khi đó \(2^x+153\)chia  3 dư 2 ( Vì 153 chia hết cho 3 ,và \(2^x\)với x là lẻ thì luôn chia 3 dư 2)

                                    \(y^2\)chia cho 3 dư 0 hoặc dư 1 (cái này là theo tính chất chia hết của số chính phương)

Như vậy 2 vế của (1) mâu thuẫn => x không thể là số lẻ. Vậy x là số chẵn.

Đặt \(x=2k\left(k\in N\right)\), ta có:

\(2^{2k}+153=y^2\Leftrightarrow y^2-\left(2^k\right)^2=153\)

\(\Leftrightarrow\left(y-2^k\right)\left(y+2^k\right)=153.\)

Nhận thấy \(y-2^k\le y+2^k\left(dok\in N\right)\)và \(y-2^k;y+2^k\)đều là các số nguyên

Mà 153=9.17=(-17).(-9)=3.51=(-51).(-3)=1.153=(-153).(-1)  suy ra xảy ra 6 trường hợp:

\(\hept{\begin{cases}y-2^k=9\\y+2^k=17\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\2^k=4\end{cases}\Leftrightarrow.}\hept{\begin{cases}k=2\\y=13\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=13\end{cases}\left(tm\right).}}\)

\(\hept{\begin{cases}y-2^k=-17\\y+2^k=-9\end{cases}\Leftrightarrow}\hept{\begin{cases}y=-13\\2^k=4\end{cases}\Leftrightarrow}\hept{\begin{cases}k=2\\y=-13\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=-13\end{cases}}\left(tm\right).}\)

\(\hept{\begin{cases}y-2^k=3\\y+2^k=51\end{cases}\Leftrightarrow\hept{\begin{cases}y=27\\2^k=24\end{cases}}}\)(vì không có k nguyên nào để \(2^k=24\)) => loại

\(\hept{\begin{cases}y-2^k=-51\\y+2^k=-3\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-27\\2^k=24\end{cases}\left(loại\right).}\)

\(\hept{\begin{cases}y-2^k=-153\\y+2^k=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}y=-77\\2^k=76\end{cases}}\)(vì không có k nguyên nào để \(2^k=76\)) => loại

\(\hept{\begin{cases}y-2^k=1\\y+2^k=153\end{cases}\Leftrightarrow}\hept{\begin{cases}y=77\\2^k=76\end{cases}\left(loại\right)}\)

Vậy các nghiệm nguyên của phương trình đã cho là \(\left(x,y\right)=\left(4;13\right),\left(4;-13\right).\)

13 tháng 6 2019

mnb,.mnbhgvjbnmkjlbh nkjnb mhjnugvhjygftyuygyh

7 tháng 2 2016

(x-2)(x^2-2x-1),xùi quá cùi

7 tháng 2 2016

quá dễ,cái này nghiệm = 2 rồi còn lại  dùng denta

11 tháng 2 2022

lớp 1 học thế này tôi cũng bó tay

7 tháng 2 2016

lớp 1 chưa học phương trình đâu 

nhưng em cx giải luôn 

x2-8x-24=0 

a=1;b=-8;c=-24 

den ta= (-8)2-4.1.(-24)=160>0 

phương trình có 2 nghiệm phân biệt 

x1= 8+căn 160 /2 

x2=8- căn 160 / 2 

7 tháng 2 2016

tau bảo dùng denta mà éo nghe

15 tháng 8 2018

đây là toán lớp 1 hả

15 tháng 8 2018

thế này thì 5 năm sau chắc hs lp 1 cng ko nghĩ ra mất

3 tháng 10 2021

Toán lớp 1 mà như này