Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt x-3=a; x+1=b
Theo đề, ta có: \(a^3+b^3=\left(a+b\right)^3\)
\(\Leftrightarrow3ab\left(a+b\right)=0\)
=>(x-3)(x+1)(2x-2)=0
hay \(x\in\left\{3;-1;1\right\}\)
b: \(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-15x^2-9x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+2x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)^2+6x\left(2x^2+1\right)-4x\left(2x^2+1\right)-24x^2=0\)
\(\Leftrightarrow\left(2x^2+1\right)\left(2x^2+6x+1\right)-4x\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow\left(2x^2-4x+1\right)\left(2x^2+6x+1\right)=0\)
\(\Leftrightarrow x^2+3x+\dfrac{1}{2}=0\)
\(\Leftrightarrow x^2+3x+\dfrac{9}{4}=\dfrac{7}{4}\)
\(\Leftrightarrow\left(x+\dfrac{3}{2}\right)^2=\dfrac{7}{4}\)
hay \(x\in\left\{\dfrac{\sqrt{7}-3}{2};\dfrac{-\sqrt{7}-3}{2}\right\}\)
=>x^3+6x^2+12x+8+1/3(8x^3-24x^2+24x-8)=1/5x+2/5+8
=>x^3+6x^2+12x+8+8/3x^3-8x^2+8x-8/3=1/5x+42/5
=>11/3x^3-2x^2+20x+16/3-1/5x-42/5=0
=>11/3x^3-11/5x^2+20x-46/15=0
=>\(x\simeq0,16\)
\(\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{x^2-2x-3}\)
* x2 - 2x - 3 = x2- 3x + x - 3 = x(x-3 ) + ( x - 3) = ( x - 3 ) ( x + 1 )
\(\Leftrightarrow\dfrac{1}{x+3}+\dfrac{8}{\left(x+1\right)\left(x-3\right)}=\dfrac{2x}{\left(x-3\right)\left(x+1\right)}\left(ĐKXĐ:x\ne\pm3;x\ne-1\right)\)
\(\Leftrightarrow\left(x+1\right)\left(x-3\right)+8\left(x+3\right)=2x\left(x+3\right)\)
\(\Leftrightarrow x^2-2x+1+8x+24=2x^2+6x\)
\(\Leftrightarrow-x^2+25=0\)
\(\Leftrightarrow x^2-25=0\Leftrightarrow\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{-5;5\right\}\)
bai 1
1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0
<=>(2x)^2-5^2=0
<=>(2x+5)*(2x-5)=0
<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
Câu 1:
a: x+2=0
nên x=-2
b: (x-3)(2x+8)=0
=>x-3=0 hoặc 2x+8=0
=>x=3 hoặc x=-4
a .
x + 2 = 0
=> x = 0 - 2 = -2
b ) .
<=> x - 3 = 0 ; 2x + 8 = 0
= > x = 3 ; x = -8/2 = -4
c ) .
ĐKXĐ của pt : x - 5 khác 0 = > ddk : x khác 5
b.
\(\dfrac{x+5}{x-1}-\dfrac{x+1}{x-3}=\dfrac{-8}{\left(x-1\right)\left(x-3\right)}\\ \Leftrightarrow\dfrac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x-1\right)\left(x-3\right)}=\dfrac{-8}{\left(x-1\right)\left(x-3\right)}\\ \Rightarrow x^2+2x-15-x^2+1=0\\ \Leftrightarrow2x-14=0\\ \Leftrightarrow x=7\)
Vậy x = 7
b.
\(\dfrac{x+5}{x-1}-\dfrac{x+1}{x-3}=\dfrac{-8}{\left(x-1\right)\left(x-3\right)}\\ \Leftrightarrow\dfrac{x^2+2x-15}{\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x-1\right)\left(x-3\right)}=\dfrac{-8}{\left(x-1\right)\left(x-3\right)}\\ \Rightarrow x^2+2x-15-x^2+1=-8\\ \Leftrightarrow2x-14=-8\\ \Leftrightarrow2x-6=0\\ \Leftrightarrow x=3\)
x^3 + (x - 2)(2x + 1) = 8
<=> x^3 + 2x^2 - 3x - 2 - 8 = 0
<=> x^3 + 2x^2 - 3x - 10 = 0
<=> (x - 2)(x^2 + 4x + 5) = 0
vì x^2 + 4x + 5 > 0 nên:
<=> x - 2 = 0
<=> x = 2
x^3+(x-2)(2x+1)=8
<=>x^3+2x^2-3x-10=0
<=>x^3-2x^2+4x^2-8x+5x-10=0
<=>x^2(x-2)+4x(x-2)+5(x-2)=0
<=>(x-2)(x^2+4x+5)=0
Mà x^2+4x+5>0
=>x-2=0<=>x=2
Hok tốt !