Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x4-x3-2x2-x+2=0
\(\Leftrightarrow\)2x4-2x3+x3-x2-x2+x-2x+2 =0
\(\Leftrightarrow\)2x3(x-1)+x2(x-1)-x(x-1)+2(x-1)=0
\(\Leftrightarrow\)(x-1)(2x3+x2-x+2)=0
\(\Leftrightarrow\)(x-1)(x-1)(2x2+3x+2)=0
\(\Leftrightarrow\)(x-1)2(2x2+3x+2)=0
\(\Leftrightarrow\) x-1=0 (do 2x2+3x+2 >0)
\(\Leftrightarrow\)x=1
đặt đk...
pt đã cho \(\Leftrightarrow\left(x^2-2x+4\right)+3\sqrt{x^2-2x+4}-4=0\)
giải pt trùng phương: đặt căn bằng t, điều kiện cho t xuất hiện pt bậc 2 một ẩn t
Đk: x thuộc R
pt đã cho \(\Leftrightarrow\left(x^2-2x+4\right)+3\sqrt{x^2-2x+4}-4=0\) (*)
đặt \(t=\sqrt{x^2-2x+4}\left(t\ge0\right)\)
pt (*) trở thành: \(t^2+3t-4=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(N\right)\\t=-4\left(L\right)\end{matrix}\right.\)
với t=1, ta có: \(\sqrt{x^2-2x+4}=1\Leftrightarrow x^2-2x+3=0\left(VN\right)\)
Kl: pt (*) vô nghiệm
Lời giải:
Ta có:
\(x^4-2x^3+2x^2+4x-8=0\)
\(\Leftrightarrow x^2(x^2-2)-2x(x^2-2)+4(x^2-2)=0\)
\(\Leftrightarrow (x^2-2)(x^2-2x+4)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\left(1\right)\\x^2-2x+4=0\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow x^2-2=0\Leftrightarrow x=\pm \sqrt{2}\)
(2)\(\Leftrightarrow x^2-2x+4=0\Leftrightarrow (x-1)^2+3=0\)
(vô lý vì \((x-1)^2+3\geq 3>0\forall x\in\mathbb{R}\) )
Vậy \(x=\pm \sqrt{2}\)
=> x3.x - 2xx2 + 2xx + 4x - 8 = 0
=> x( x^3 - 2x^2 + 2x + 4 ) - 8 = 0
=> x( xx^2 - 2xx + 2x + 4 ) = 8
=> x[ x( x^2 - 2x + 2 ) + 4 ] = 8
=> x{ x[ x( x - 2 ) + 2 ] + 4 } = 8
P/s : Không biết nữa , làm đại
\(x^4-2x^3+2x^2+4x-8=0\)
\(\Leftrightarrow\left(x^4-2x^2\right)+\left(-2x^3+4x\right)+\left(4x^2-8\right)=0\)
\(\Leftrightarrow\left(x^2-2\right)\left(x^2-2x+4\right)=0\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(x^4+2x^3+4x^2+2x+1=0\)
\(\Leftrightarrow\left(x^4+2x^3+x^2\right)+\left(3x^2+2x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x\right)^2+2.\sqrt{3}x.\frac{1}{\sqrt{3}}+\frac{1}{3}+\frac{2}{3}=0\)
\(\Leftrightarrow\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}=0\)
Ta dễ thấy \(\left(x^2+x\right)^2+\left(\sqrt{3}x+\frac{1}{\sqrt{3}}\right)^2+\frac{2}{3}>0\forall x\)
Do đó pt trên vô nghiệm
Lời giải:
a) Với \(m=0\) phương trình trở thành:
\((x^2-2x-3)(x^2-2x+3)=0\Leftrightarrow (x-3)(x+1)(x^2-2x+3)=0\)
\(\Rightarrow\left[\begin{matrix}x-3=0\\x+1=0\\x^2-2x+3=0\end{matrix}\right.\) \(\Leftrightarrow \) \(\left[\begin{matrix}x=3\\x=-1\\\left(x-1\right)^2+2=0\left(vl\right)\end{matrix}\right.\)
Vậy \(x\in \left\{-1,3\right\}\)
b) Để PT có $4$ nghiệm phân biết thì phương trình \(x^2-2x+2m+3=0\) phải có hai nghiệm phân biệt khác \(-1\) và \(3\)
Tức là \(\left\{\begin{matrix} \Delta' =1-(2m+3)>0\\ 3^2-2.3+2m+3\neq 0\\ (-1)^2-2(-1)+2m+3\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m<-1\\ m\neq -3\\ \end{matrix}\right.\)
c) Áp dụng định lý Viet cho PT \(x^2-2x+2m+3=0\) có nghiệm thỏa mãn:\(\left\{\begin{matrix}x_3+x_4=2\\x_3x_4=2m+3\end{matrix}\right.\)
Có \(A=x_1x_2x_3x_4=-3x_3x_4=-3(2m+3)\)
Ta có với mọi \(x_3,x_4\in\mathbb{R}\) thì đều có \(x_3x_4\leq \left(\frac{x_3+x_4}{2}\right)^2=1\)
\(\Rightarrow -3x_3x_4\geq -3\) (khi nhân với số âm thì đổi dấu)
\(\Rightarrow A_{\min }=-3\Leftrightarrow m=-1\)
Câu b với c không liên quan đến nhau phải không? Nếu không thì không tìm được min đâu.
\(x^4-4x^3-2x^2+4x+1=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-4x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2-\sqrt{5}\\x=2+\sqrt{5}\end{matrix}\right.\)
Tính nhanh:
a) 732 – 272; b) 372 - 132
c) 20022 – 22
Bài giải:
a) 732 – 272 = (73 + 27)(73 – 27) = 100 . 46 = 4600
b) 372 - 132 = (37 + 13)(37 – 13) = 50 . 25 = 100 . 12 = 1200
c) 20022 – 22 = (2002 + 2)(2002 – 2) = 2004 . 2000 = 40080
\(x^3-2x-4=0\)
\(\Leftrightarrow x^3+2x^2+2x-2x^2-4x-4=0\)
\(\Leftrightarrow x\left(x^2+2x+2\right)-2\left(x^2+2x+2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x+2\right)=0\)
Dễ thấy: \(x^2+2x+2=\left(x+1\right)^2+1>0\)
Suy ra x-2=0 hay x=2