K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2017

\(x^2-6x+9=4.\sqrt{x^2-6x+6}\)\(ĐK:x^2-6x+6\ge0\)

Đặt \(\sqrt{x^2-6x+6}=t\)\(\left(ĐK:t\ge0\right)\)

\(\Leftrightarrow t^2=x^2-6x+6\)

\(\Leftrightarrow x^2-6x=t-6\)thay vào pt ta được : 

\(\Leftrightarrow t^2-6+9=4t\)

\(\Leftrightarrow t^2-4t+3=0\)\(\Leftrightarrow\orbr{\begin{cases}t=1\\t=3\end{cases}}\)

Với \(t=1\Rightarrow\sqrt{x^2-6x+6}=1\)

                  \(\Leftrightarrow x^2-6x+5=0\)

                   \(\Leftrightarrow\orbr{\begin{cases}x=1\left(TM\right)\\x=5\left(TM\right)\end{cases}}\)

Với \(t=3\Rightarrow\sqrt{x^2-6x+6}=3\)

                   \(\Leftrightarrow x^2-6x+6=0\)

                    \(\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(TM\right)\end{cases}}\)

9 tháng 6 2019

\(a,|x+3|=3x-1\)

+) với:\(x\ge-3\Rightarrow x+3\ge0\Rightarrow|x+3|=x+3\)

\(\Rightarrow3x-1=x+3\Rightarrow3x=x+4\Rightarrow x=2\left(\text{ thỏa mãn}\right)\)

+) với: \(x< -3\Rightarrow x+3< 0\Rightarrow|x+3|=-3-x\)

\(\Rightarrow-3-x=3x-1\Rightarrow-x=3x+2\Rightarrow4x+2=0\Rightarrow x=-\frac{1}{2}\left(\text{loại}\right)\)

Vậy: x=2

13 tháng 5 2020

cu dương to không

6 tháng 8 2015

a)x5+x-1=0

<=>(x5+x4+x3+x2+x)-(x4+x3+x2+x+1)=0

<=>(x4+x3+x2+x+1)(x-1)=0

Do x4+x3+x2+x+1>0

=>x+1=0

<=>x=1

9 tháng 6 2019

a)\(ĐKXĐ:x\ge\frac{-1}{2}\)

 \(\sqrt{x^2+4x+4}=2x+1\)

\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)

\(\Leftrightarrow x+2=2x+1\)

\(\Leftrightarrow-x=-1\)

\(\Leftrightarrow x=1\)

Vậy nghiệm duy nhất của phương trình là 1.

9 tháng 6 2019

b)\(ĐKXĐ:x\ge3\)

 \(\sqrt{4x^2-12x+9}=x-3\)

\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)

\(\Leftrightarrow2x-3=x-3\)

\(\Leftrightarrow2x=x\)

\(\Leftrightarrow x=0\)(không t/m đkxđ)

Vậy phương trình vô nghiệm

28 tháng 7 2017

Sao m` đăng lắm thế 

28 tháng 7 2017

\(2x.\left(x-1\right)+1=\sqrt{x^2-x+1}\\ \text{còn lại tự làm}\)