![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có: 8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)^2\)\(\left(x+\dfrac{1}{x}\right)^2\)=(x+4)2
ĐKXĐ: x khác 0
<=>8\(\left(x+\dfrac{1}{x}\right)^2\)+4\(\left(x^2+\dfrac{1}{x^2}\right)\)\(\left(x^2+\dfrac{1}{x^2}-x^2-2-\dfrac{1}{x^2}\right)\)=(x+4)2
<=>8\(\left(x+\dfrac{1}{x}\right)^2-8\left(x^2+\dfrac{1}{x^2}\right)=\left(x+4\right)^2\)
<=>8\(\left(x^2+2+\dfrac{1}{x^2}-x^2-\dfrac{1}{x^2}\right)\)=(x+4)2
=>(x+4)2=16
Vậy có 2 TH:
+) x+4=4 => x=0(KTMĐKXĐ)
+)x+4=-4 => x=-8(TMĐKXĐ)
Vậy tập nghiệm của phương trình S={-8}
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
1)\(ĐKXĐ:x\ne0\)
Đặt \(\left(x+\dfrac{1}{x}\right)^2=a\)
\(\Rightarrow x^2+\dfrac{1}{x^2}=a-2\)
\(\Rightarrow VT=2a+\left(a-2\right)^2-\left(a-2\right)a\)
\(=2a+a^2-4a+4-a^2+2a=4\)
\(\Rightarrow\left(x+2\right)^2=4\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=-4\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x-1\right)^2=9\left(x+1\right)^2\)
\(\Leftrightarrow\)\(\left(x-1\right)^2-\left(3x+3\right)^2\)=0
\(\Leftrightarrow\)\(\left(x-1+3x+3\right)\left(x-1-3x-3\right)\)=0
\(\Leftrightarrow\)\(\left(4x+2\right)\left(-2x-4\right)\)=0
+ 4x+2=0 => x=-1/2
+ -2x -4=0 => x=-2
rồi bạn tự kết luận đi
b) đk x khác +-1
\(\Leftrightarrow\)\(\frac{\left(x-4\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{\left(x+4\right)\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)=\(\frac{2\left(x+1\right)\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(\Leftrightarrow\)\(x^2+x-4x-4+x^2-x+4x-4-2x^2+2=0\)
\(\Leftrightarrow\)-6=0(vô lí)
vậy PT ko có nghiệm
ĐKXĐ : \(x\ne0\)
Ta có :\(\frac{x+1}{x}=\frac{x^2+1}{x^2}\)
\(\Leftrightarrow\frac{x^2+x}{x^2}=\frac{x^2+1}{x^2}\)
\(\Rightarrow x^2+x=x^2+1\)
\(\Leftrightarrow x=1\)(Thỏa mãn)
Vậy \(x=1\)
\(\frac{x+1}{x}=\frac{x^2+1}{x^2}\)
ĐKXĐ : x khác 0
=> x2( x + 1 ) = x( x2 + 1 )
<=> x3 + x2 - x3 - x = 0
<=> x( x - 1 ) = 0
<=> x = 0 ( ktm ) hoặc x = 1 ( tm )
Vậy ...