Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow x^3+x^2-2x+5x^2+5x-10=0\)
\(\Leftrightarrow x\left(x^2+x-2\right)+5\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x^2+x-2\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(x+2\right)\left(x-1\right)=0\)
b/ \(\Leftrightarrow x^3+5x^2+6x-x^2-5x-6=0\)
\(\Leftrightarrow x\left(x^2+5x+6\right)-\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(x^3+6x^2+3x-10=0\)
\(\Leftrightarrow x^3-x^2+7x^2-7x+10x-10=0\)
\(\Leftrightarrow x^2\left(x-1\right)+7x\left(x-1\right)+10\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+7x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+5x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-5\end{matrix}\right.\)
Vậy \(S=\left\{1;-2;-5\right\}\)
\(x^3+4x^2+x-6=0\)
\(\Leftrightarrow x^3-x^2+5x^2-5x+6x-6=0\)
\(\Leftrightarrow x^2\left(x-1\right)+5x\left(x-1\right)+6\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+5x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2+2x+3x+6\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x\left(x+2\right)+3\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=-3\end{matrix}\right.\)
Vậy \(S=\left\{1;-2;-3\right\}\)
b.\(x^3-16x^2+64x=0\)
=>\(x^3-8x^2-8x^2+64x=0\)
=>\(x^2\left(x-8\right)-8x\left(x-8\right)=0\)
=>\(x\left(x-8\right)\left(x-8\right)=0\)
=>\(x=0\) và \(x-8=0\)
=>x=0 và x= 8
Vậy S={0; 8}
\(|6x-1|=2x+5\)
-Nếu 6x - 1 \(\ge0\Leftrightarrow x\ge\dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow6x-1=2x+5\)
\(\Leftrightarrow6x-2x=5+1\)
\(\Leftrightarrow4x=6\)
\(\Leftrightarrow x=\dfrac{3}{2}\) (Loại)
-Nếu 6x-1 < 0 \(\Leftrightarrow x< \dfrac{1}{6}\)
\(|6x-1|=2x+5\)
\(\Leftrightarrow-6x+1=2x+5\)
\(\Leftrightarrow-6x-2x=5-1\)
\(\Leftrightarrow-8x=4\)
\(\Leftrightarrow x=-\dfrac{1}{2}\)(Nhận)
Vậy S={\(-\dfrac{1}{2}\)}
a, Ta có : \(3\left(x-1\right)-2\left(x+3\right)=-15\)
=> \(3x-3-2x-6=-15\)
=> \(3x-3-2x-6+15=0\)
=> \(x=-6\)
Vậy phương trình có nghiệm là x = -6 .
b, Ta có : \(3\left(x-1\right)+2=3x-1\)
=> \(3x-3+2=3x-1\)
=> \(3x-3+2-3x+1=0\)
=> \(0=0\)
Vậy phương trình có vô số nghiệm .
c, Ta có : \(7\left(2-5x\right)-5=4\left(4-6x\right)\)
=> \(14-35x-5=16-24x\)
=> \(14-35x-5-16+24x=0\)
=> \(-35x+24x=7\)
=> \(x=\frac{-7}{11}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{11}\) .
Bài 2 :
a, Ta có : \(\frac{x}{30}+\frac{5x-1}{10}=\frac{x-8}{15}-\frac{2x+3}{6}\)
=> \(\frac{x}{30}+\frac{3\left(5x-1\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{5\left(2x+3\right)}{30}\)
=> \(x+3\left(5x-1\right)=2\left(x-8\right)-5\left(2x+3\right)\)
=> \(x+15x-3=2x-16-10x-15\)
=> \(x+15x-3-2x+16+10x+15=0\)
=> \(24x+28=0\)
=> \(x=\frac{-28}{24}=\frac{-7}{6}\)
Vậy phương trình có nghiệm là \(x=\frac{-7}{6}\) .
b, Ta có : \(\frac{x+4}{5}-x+4=\frac{x}{3}-\frac{x-2}{2}\)
=> \(\frac{6\left(x+4\right)}{30}-\frac{30x}{30}+\frac{120}{30}=\frac{10x}{30}-\frac{15\left(x-2\right)}{30}\)
=> \(6\left(x+4\right)-30x+120=10x-15\left(x-2\right)\)
=> \(6x+24-30x+120=10x-15x+30\)
=> \(6x+24-30x+120-10x+15x-30=0\)
=> \(-19x+114=0\)
=> \(x=\frac{-114}{-19}=6\)
Vậy phương trình có nghiệm là x = 6 .
\(x^4-6x^3+7x^2+6x-8=0\)
\(\Leftrightarrow x^4-4x^3-2x^3+8x^2-x^2+4x+2x-8=0\)
\(\Leftrightarrow x^3\left(x-4\right)-2x^2\left(x-4\right)-x\left(x-4\right)+2\left(x-4\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x^3-2x^2-x+2\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left[x^2\left(x-2\right)-\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-1\right)\left(x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{-1;1;2;4\right\}\)
Vậy S={-1;1;2;4}
a) \(\frac{x+5}{4}-\frac{2x-3}{3}=\frac{6x-1}{8}+\frac{2x-1}{12}\)
<=> \(\frac{x}{4}+\frac{5}{4}-\frac{2x}{3}+1=\frac{6x}{8}-\frac{1}{8}+\frac{2x}{12}-\frac{1}{12}\)
<=> \(-\frac{4}{3}x=-\frac{59}{24}\)
<=> \(x=\frac{59}{32}\)
Vậy S = { 59/32}
b) \(\frac{\left(x+10\right)\left(x+4\right)}{12}-\frac{\left(x+4\right)\left(2-x\right)}{4}=\frac{\left(x+10\right)\left(x-2\right)}{3}\)
<=> \(\frac{x^2+14x+40}{12}-\frac{-x^2-2x+8}{4}=\frac{x^2+8x-20}{3}\)
<=> \(\left(\frac{x^2}{12}+\frac{x^2}{4}-\frac{x^2}{3}\right)+\left(\frac{14}{12}x+\frac{2}{4}x-\frac{8}{3}x\right)=-\frac{20}{8}+\frac{8}{4}-\frac{40}{12}\)
<=> \(-x=-8\)
<=> x = 8
Vậy S = { 8 }
\(\left(x-3\right)^4-3\left(x^2-6x+10\right)=1\)
\(\Leftrightarrow x^4-12x^3+51x^2-90x+51=1\)
\(\Leftrightarrow x^4-12x^3+51x^2-90x+51-1=0\)
\(\Leftrightarrow x^4-12x^3+51x^2-90x+50=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-5\right)\left(x^2-6x+10\right)=0\)
vì \(x^2-6x+10\ne0\) nên:
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)
Vậy: Phương trình có tập nghiệm là: S = {1; 5}
Ta có: \(\left(x-3\right)^4-3\left(x^2-6x+10\right)=1\)
\(\Leftrightarrow\left(x^2-6x+9\right)^2-3x^2+18x-30-1=0\)
\(\Leftrightarrow x^4+36x^2+81+12x^3+18x^2+108x-3x^2+18x-31=0\)
\(\Leftrightarrow x^4+12x^3+51x^2+126x+50=0\)