\(\frac{-x-2}{x-3}\)| = 4

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2020

\(\orbr{\begin{cases}\left(x+2\right).\left(-\frac{x-2}{x-3}\right)=4\\\left(x+2\right).\left(-\frac{x-2}{x-3}\right)=-4\end{cases}}\)

7 tháng 4 2020

giải phương trình trên ra là rồi áp dụng biệt thức sau đó ta sẽ thu đc là pt vô nghiệm 

20 tháng 8 2019

a,\(\Leftrightarrow\left(4x-1\right)^2\left(x^2+1\right)=4\left(x^2-x+1\right)^2\)

\(\Leftrightarrow\left(16x^2-8x+1\right)\left(x^2+1\right)=4\left(x^4+x^2+1-2x^3+2x^2-2x\right)\)

\(\Leftrightarrow16x^4+17x^2-8x^3-8x+1=4x^4+12x^2+4-8x^3-8x\)

\(\Leftrightarrow12x^4+5x^2-3=0\left(1\right)\)

Dat \(x^2=t\left(t\ge0\right)\)

\(\left(1\right)\Leftrightarrow12t^2+5t-3=0\)

\(\Delta=25-4.12.\left(-3\right)=169>0\)

Suy ra PT co hai nghiem phan biet

\(t_1=\frac{1}{3};t_2=-\frac{3}{4}\)

\(x=\frac{1}{\sqrt{3}}\)

2 tháng 8 2017

Sửa lại đề \(\frac{x+1}{x-1}+\frac{x-2}{x+2}+\frac{x-3}{x+3}+\frac{x+4}{x-4}=-4\)

ĐK \(x\ne\left\{1;-2;-3;4\right\}\)

\(\Leftrightarrow\left(\frac{x+1}{x-1}+1\right)+\left(\frac{x-2}{x+2}+1\right)+\left(\frac{x-3}{x+3}+1\right)+\left(\frac{x+4}{x-4}+1\right)=0\)

\(\Leftrightarrow\frac{2x}{x-1}+\frac{2x}{x+2}+\frac{2x}{x+3}+\frac{2x}{x-4}=0\)

\(\Leftrightarrow2x\left(\frac{1}{x-1}+\frac{1}{x+2}+\frac{1}{x+3}+\frac{1}{x-4}\right)=0\Leftrightarrow x=0\)vì \(\frac{1}{x-1}+\frac{1}{x+2}+\frac{1}{x+3}+\frac{1}{x-4}\ne0\)

Vậy pt có nghiệm  \(x=0\)

2 tháng 8 2017

cô giáo in đề cho mk là =4 mà

nếu k thì mk xong lâu r

12 tháng 7 2020

Bạn vào link này để xem bài làm của mik nha

large_1594515830440.jpg (768×1024)

12 tháng 7 2020

Mik ko gửi đc link , ib riêng nhé

31 tháng 3 2017

\(\Leftrightarrow\frac{-x+1}{2}=\frac{x-2}{x-4}\)

\(\Leftrightarrow x^2+4x-3=2x-4\)

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

\(\Leftrightarrow x=-1\)

Bài này là bài lớp 8 mà.

31 tháng 3 2017

BẠN HỌC LỚP MẤY Ạ

12 tháng 5 2018

a,-0,162

30 tháng 8 2019

Em có cách này nhưng ko chắc đâu nha!

a) ĐK: x>-4

Đặt \(\sqrt{2x^2+x+9}=a>0;\sqrt{2x^2-x+1}=b>0\) thì:

\(a^2-b^2=2x+8>0\Rightarrow a>b\) (*)

\(PT\Leftrightarrow a+b=\frac{a^2-b^2}{2}\Rightarrow2\left(a+b\right)=a^2-b^2\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)=2\left(a+b\right)\)

\(\Leftrightarrow\left(a+b\right)\left(a-b-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}a=-b\left(1\right)\\a-b=2\left(2\right)\end{cases}}\).

*Giải (1): Ta có; a = -b < b (do b >0), mâu thuẫn với (*), loại.

*Giải (2): \(\Leftrightarrow a=b+2\Leftrightarrow a^2=b^2+4b+4\)

\(\Leftrightarrow2\left(x+4\right)=4\sqrt{2x^2-x+1}+4\)

\(\Leftrightarrow\left(x+2\right)=2\sqrt{2x^2-x+1}\)

\(\Leftrightarrow x^2+4x+4=4\left(2x^2-x+1\right)\)

\(\Leftrightarrow7x^2-8x=0\Leftrightarrow7x\left(x-\frac{8}{7}\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\left(TM\right)\\x=\frac{8}{7}\left(TM\right)\end{cases}}\)

30 tháng 8 2019

Note: Em ko chắc nha!

b)ĐK: x>-3

PT\(\Leftrightarrow2-\sqrt{\frac{1}{x+3}}+2-\sqrt{\frac{5}{x+4}}=0\)

\(\Leftrightarrow\frac{4-\frac{1}{x+3}}{2+\sqrt{\frac{1}{x+3}}}+\frac{4-\frac{5}{x+4}}{2+\sqrt{\frac{5}{x+4}}}=0\)

\(\Leftrightarrow\frac{4\left(x+\frac{11}{4}\right)}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4\left(x+\frac{11}{4}\right)}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}=0\)

\(\Leftrightarrow\left(x+\frac{11}{4}\right)\left[\frac{4}{\left(x+3\right)\left(2+\sqrt{\frac{1}{x+3}}\right)}+\frac{4}{\left(x+4\right)\left(2+\sqrt{\frac{5}{x+4}}\right)}\right]=0\)

Cái ngoặc to lớn hơn 0 (hiển nhiên)

Bí.