K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2018

\(\left(x-1\right)\left(x-2\right)\left(x+4\right)\left(x+5\right)+9=0\)

\(\Leftrightarrow\left(x^2-3x+4\right)\left(x^2+3x-10\right)+9=0\)

\(\Leftrightarrow\left(x^2+3x-7+3\right)\left(x^2+3x-7-3\right)+9=0\)

\(x^2+3x-7=0\)

\(x^2+3x=7\)

\(\Rightarrow x^2+2x.\frac{3}{2}+\frac{9}{4}=7+\frac{9}{4}\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2=\frac{37}{4}\)

\(\Rightarrow x+\frac{3}{2}=\pm\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}-\sqrt{\frac{37}{4}}\)

\(\Rightarrow x=\frac{-3}{2}+\sqrt{\frac{37}{4}}\)

Vậy \(S=\left\{\frac{-3}{2}-\sqrt{\frac{37}{4}};\frac{-3}{2}+\sqrt{\frac{37}{4}}\right\}\)

6 tháng 2 2019

ta có : x^5+2x^4+3x^3+3x^2+2x+1=0

\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0

\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0

\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0

\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0

\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0

\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0

x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)

\(\Rightarrow\)x+1=0

\(\Rightarrow\)x=-1

CÒN CÂU B TỰ LÀM (02042006)

b: x^4+3x^3-2x^2+x-3=0

=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0

=>(x-1)(x^3+4x^2+2x+3)=0

=>x-1=0

=>x=1

13 tháng 3 2016

bai 1

1 thay k=0 vao pt ta co 4x^2-25+0^2+4*0*x=0

<=>(2x)^2-5^2=0

<=>(2x+5)*(2x-5)=0

<=>2x+5=0 hoăc 2x-5 =0 tiếp tục giải ý 2 tương tự

19 tháng 2 2023

`1/9(x-3)^2-1/25(x+5)^2=0`

`<=>(1/3x-1)^2-(1/5x+1)^2=0`

`<=>(1/3x-1-1/5x-1)(1/3x-1+1/5x+1)=0`

`<=>(2/15x-2). 8/15x=0`

`<=>2/15x-2=0` hoặc `8/15x=0`

`<=>x=15`         hoặc `x=0`

Vậy `S=`{`15;0`}

24 tháng 1 2021

(4x - 3)2 - (2x + 1)2 = 0

\(\Leftrightarrow\) (4x - 3 - 2x - 1)(4x - 3 + 2x + 1) = 0

\(\Leftrightarrow\) (2x - 4)(6x - 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy ...

3x - 12 - 5x(x - 4) = 0

\(\Leftrightarrow\) 3x - 12 - 5x2 + 20x = 0

\(\Leftrightarrow\) -5x2 + 23x - 12 = 0

\(\Leftrightarrow\) 5x2 - 23x + 12 = 0

\(\Leftrightarrow\) 5x2 - 20x - 3x + 12 = 0

\(\Leftrightarrow\) 5x(x - 4) - 3(x - 4) = 0

\(\Leftrightarrow\) (x - 4)(5x - 3) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x-4=0\\5x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy ...

(8x + 2)(x2 + 5)(x2 - 4) = 0

\(\Leftrightarrow\) (8x + 2)(x2 + 5)(x - 2)(x + 2) = 0

Vì x2 \(\ge\) 0 \(\forall\) x nên x2 + 5 > 0 \(\forall\) x

\(\Rightarrow\) (8x + 2)(x - 2)(x + 2) = 0

\(\Leftrightarrow\) \(\left[{}\begin{matrix}8x+2=0\\x-2=0\\x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=\dfrac{-1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt!

a) Ta có: \(\left(4x-3\right)^2-\left(2x+1\right)^2=0\)

\(\Leftrightarrow\left(4x-3-2x-1\right)\left(4x-3+2x+1\right)=0\)

\(\Leftrightarrow\left(2x-4\right)\left(6x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-4=0\\6x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=4\\6x=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

Vậy: \(S=\left\{2;\dfrac{1}{3}\right\}\)

b) Ta có: \(3x-12-5x\left(x-4\right)=0\)

\(\Leftrightarrow3\left(x-4\right)-5x\left(x-4\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(3-5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\3-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\5x=3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy: \(S=\left\{4;\dfrac{3}{5}\right\}\)

c) Ta có: \(\left(8x+2\right)\left(x^2+5\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow2\left(4x+1\right)\left(x^2+5\right)\left(x-2\right)\left(x+2\right)=0\)

mà \(2>0\)

và \(x^2+5>0\forall x\)

nên \(\left(4x+1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+1=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-1\\x=2\\x=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(S=\left\{-\dfrac{1}{4};2;-2\right\}\)

3 tháng 5 2017

a. (3x-4)2=9(x-1)(x+1)

<=> 9x2-24x+16=9x2-9

<=> -24x=-25

<=> x=\(\dfrac{25}{24}\)

Vậy S=\(\left\{\dfrac{25}{24}\right\}\)

b. (4x-5)2-4(x-2)2=0

<=> (4x-5)2-(2x-4)2=0

<=> (4x-5-2x+4)(4x-5+2x-4)=0

<=> (2x-1)(6x-9)=0

<=> \(\left[{}\begin{matrix}2x-1=0\\6x-9=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy S=\(\left\{\dfrac{1}{2};\dfrac{3}{2}\right\}\)

3 tháng 5 2017

c. |x2-x|= -2x

Ta có: |x2-x|=x2-x khi x2-x\(\ge0\) hay x\(\ge1\)

=> x2-x= -2x

<=> x2-x+2x=0

<=> x2+x=0

<=> x(x+1)=0

<=> \(\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) (không thỏa mãn điều kiện x\(\ge1\))

Lại có: |x2-x|= x-x2 khi x2-x<0 hay x<1

=> x-x2= -2x

<=> x-x2+2x=0

<=> 3x-x2=0

<=> x(3-x)=0

x=0 (thỏa mãn điều kiện x<1)

hoặc: 3-x=0<=> x=3 (không thỏa mãn điều kiện x<1)

Vậy S=\(\left\{0\right\}\)

d. \(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

ĐKXĐ: \(x\ne\pm3\)

Ta có:\(\dfrac{x+3}{x-3}+\dfrac{48x^3}{9-x^2}=\dfrac{x-3}{x+3}\)

<=> \(\dfrac{\left(x+3\right)^2}{\left(x-3\right)\left(x+3\right)}-\dfrac{48x^3}{\left(x-3\right)\left(x+3\right)}=\dfrac{\left(x-3\right)^2}{\left(x-3\right)\left(x+3\right)}\)

=> x2+6x+9-48x3=x2-6x+9

<=> 12x-48x3=0

<=> 12x(1-4x2)=0

<=> 12x(1-2x)(1+2x)=0

<=> \(\left[{}\begin{matrix}x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-0,5\end{matrix}\right.\) (thỏa mãn ĐKXĐ)

Vậy S=\(\left\{0;\pm0,5\right\}\)

4 tháng 5 2017

a ) ( 3x - 4 )2 = 9 (x-1)(x+1)

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9 ( x2 - 1 )

\(\Leftrightarrow\) 9x2 - 24x + 16 = 9x2 - 9

\(\Leftrightarrow\) 9x2 - 24x - 9x2 = - 9 - 16

\(\Leftrightarrow\) -24x = -24

\(\Leftrightarrow\) x = 1

Vậy phương trình có nghiệm x = 1 .

27 tháng 2 2021

`20((x-2)/(x+1))^2-5((x+2)/(x-1))^2+48(x^2-4)/(x^2-1)=0(x ne +-1)`

Đặt `(x-2)/(x+1)=a,(x+2)/(x-1)=b`

`pt<=>20a^2-5b^2+48ab=0`

`<=>20a^2+48ab-5b^2=0`

`<=>20a^2-2ab+50ab-5b^2=0`

`<=>2a(a-10b)+5b(10a-b)=0`

`<=>(a-10b)(2a+5b)=0`

Đến đây dễ rồi bạn tự giải tiếp.

27 tháng 2 2021

ĐKXĐ: x \(\ne\)\(\pm\)1

Ta có: \(20\left(\dfrac{x-2}{x+1}\right)^2-5\left(\dfrac{x+2}{x-1}\right)^2+48\cdot\dfrac{x^2-4}{x^2-1}=0\)

Đặt: \(\dfrac{x-2}{x+1}=a\) ; \(\dfrac{x+2}{x-1}=b\)

=> ab = \(\dfrac{x^2-4}{x^2-1}\)

Do đó, ta có pt mới: 20a2 - 5b2 + 48ab = 0

<=> 20a2 + 50ab - 2ab - 5b2 = 0

<=> (10a - b)(2a + 5b) = 0

<=> \(\left[{}\begin{matrix}10a=b\\2a=-5b\end{matrix}\right.\)

TH1: 10a = b => \(10\cdot\dfrac{x-2}{x+1}=\dfrac{x+2}{x-1}\)

<=> 10(x - 2)(x - 1) = (x + 2)(x + 1)

<=> 10x2 - 30x + 20 = x2 + 3x + 2

<=> 9x2 - 33x + 18 = 0

<=> 9x2 - 27x - 6x + 18 = 0

<=> (9x - 6)(x - 3) = 0

<=> \(\left[{}\begin{matrix}x=3\\x=\dfrac{2}{3}\end{matrix}\right.\)(tm)

TH2: \(2a=-5b\)=> \(2\cdot\dfrac{x-2}{x+1}=-5\cdot\dfrac{x+2}{x-1}\)

=> (2x - 4)(x - 1) = (-5x - 10)(x + 1)

<=> 2x2 - 6x + 4 = -5x2 - 15x - 10

<=> 7x2 + 9x + 14 = 0

=> pt vn

27 tháng 3 2020
https://i.imgur.com/cGrmxY5.jpg