Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d)
\(x\ne a,x\ne b\)
đặt \(\frac{x-a}{x-b}=t\Leftrightarrow t+\frac{1}{t}=2\Leftrightarrow\frac{t^2-2t+1}{t}=0\Rightarrow t=1\)
\(\frac{x-a}{x-b}=1\Leftrightarrow\frac{\left(x-a\right)-\left(x-b\right)}{x-b}=\frac{b-a}{x-b}=0\)
Vậy: \(a\ne b\) Pt vô nghiệm
a=b phương trinhg nghiệm với mọi x khác a, b
Phương trình đã cho có nghiệm khi và chỉ khi \(\hept{\begin{cases}m\ne0\\\Delta\ge0\end{cases}}\)
Xét \(\Delta=\left(m+2\right)^2-8m=\left(m-2\right)^2\ge0\)
Suy ra phương trình đã cho có 2 nghiệm \(x_1;x_2\)với mọi m khác 0
Theo hệ thức Viet , ta có : \(x_1+x_2=\frac{m+2}{m}\left(1\right);x_1x_2=\frac{2}{m}\)(2)
Ta có \(P=\frac{x_1}{x_2+1}+\frac{x_2}{x_1+1}=\frac{\left(x_1^2+x_2^2\right)+x_1+x_2}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2-2x_1x_2+\left(x_1+x_2\right)}{x_1x_2}\)
\(=\frac{\left(x_1+x_2\right)^2+\left(x_1+x_2\right)}{x_1x_2}-2\)(3)
Từ (1) , (2) và (3) suy ra \(P=\frac{m^2+m+2}{m}\)với m khác 0
a) ĐKXĐ : \(x\ne5;x\ne-m\)
Khử mẫu ta được :
\(x^2-m^2+x^2-25=2\left(x+5\right)\left(x+m\right)\)
\(\Leftrightarrow-2x\left(m+5\right)=m^2+10m+25\)
\(\Leftrightarrow-2\left(m+5\right)x=\left(m+5\right)^2\)
Nếu m = -5 thì phương trình có dạng 0x = 0 ; PT này có nghiệm tùy ý. để nghiệm tùy ý này là nghiệm của PT ban đầu thì x \(\ne\pm5\)
Nếu m \(\ne-5\) thì PT có nghiệm \(x=\frac{-\left(m+5\right)^2}{2\left(m+5\right)}=\frac{-\left(m+5\right)}{2}\)
Để nghiệm trên là nghiệm của PT ban đầu thì ta có :
\(\frac{-\left(m+5\right)}{2}\ne-5\)và \(\frac{-\left(m+5\right)}{2}\ne-m\)tức là m \(\ne5\)
Vậy nếu \(m\ne\pm5\)thì \(x=-\frac{m+5}{2}\)là nghiệm của phương trình ban đầu
b) ĐKXĐ : \(x\ne2;x\ne m;x\ne2m\)
PT đã cho đưa về dạng x(m+2) = 2m(4-m)
Nếu m = -2 thì 0x = -24 ( vô nghiệm )
Nếu m \(\ne-2\)thì \(x=\frac{2m\left(4-m\right)}{m+2}\)( \(x\ne2;x\ne m;x\ne2m\) )
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2\) thì \(\left(m-1\right)\left(2m-4\right)\ne0\)hay \(m\ne1;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne m\)thì \(3m\left(m-2\right)\ne0\)hay \(m\ne0;m\ne2\)
Với \(\frac{2m\left(4-m\right)}{m+2}\ne2m\)thì \(4m\left(m-1\right)\ne0\)hay \(m\ne0;m\ne1\)
Vậy khi \(m\ne\pm2\)và \(m\ne0;m\ne1\)thì PT có nghiệm \(x=\frac{2m\left(4-m\right)}{m+2}\)
giải và biện luận phương trình sau:
\(\frac{3}{x-m}-\frac{1}{x-2}=\frac{2}{x-2m}\) (với m là tham số)
x khác 2, khác 6m
\(pt\Leftrightarrow\left|x-2\right|=\left|x-6m\right|\Leftrightarrow\orbr{\begin{cases}x-2=x-6m\\x-2=6m-x\end{cases}\Leftrightarrow}\orbr{\begin{cases}2=6m\\2x=6m+2\end{cases}\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{3}\\x=3m+1\end{cases}}}\)
Với m=1/3 phương trình có vô số ngiệm x khác 2
Với x=3m+1
Vì x khác 2 và x khác 6m nên ta có:\(\hept{\begin{cases}3m+1\ne2\\3m+1\ne6m\end{cases}\Leftrightarrow m\ne\frac{1}{3}}\)
Vậy ...