\(x+\sqrt{5+\sqrt{x-1}}=6\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2017

Điều kiện xác định tự làm nha b.

Đặt \(\hept{\begin{cases}\sqrt{2+x}=a\\\sqrt{2-x}=b\end{cases}}\)

\(\Rightarrow a^2+4b^2=10-3x\)

Từ đây ta có pt trở thành

\(3a-6b+4ab-a^2-4b^2=0\)

\(\left(a-2b\right)\left(a-2b-3\right)=0\)

Tới đây đơn giản rồi b làm tiếp nhé

20 tháng 8 2017

91 nhé

đặt \(\sqrt{4-x^2}=y\)
ta có phương trình \(\left(x+y\right)=2+3xy\)

bình lên rồi phân tích còn cái vừa nãy tớ nhầm bài khác xin lỗi

b2

\(\left(\sqrt{2x^2-6x+2}-2x+3\right)\left(-\sqrt{2x^2-6x+2}-3x+4\right)=0\)

14 tháng 8 2017

Dự đoán \(\frac{1}{2}\)là nghiệm của phương trình ( casio :v)

Áp dụng AM-GM:\(2VF=3.\sqrt[3]{4.8x\left(4x^2+3\right)}\le4+8x+4x^2+3=4x^2+8x+7\)

và \(4x^2+8x+7\le8x^4+2x^2+6x+8\)vì nó tương đương \(\left(2x-1\right)^2\left(2x^2+2x+1\right)\ge0\)

Do đó \(VT\ge VF\)

Dấu = xảy ra khi\(x=\frac{1}{2}\)

19 tháng 8 2017

\(13\sqrt{x-1}+9\sqrt{x+1}=6\)

Điều kiện: \(\hept{\begin{cases}x-1\ge0\\x+1\ge0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\ge1\\x\ge-1\end{cases}}\)

\(\Leftrightarrow x\ge1\)

Đặt \(\hept{\begin{cases}\sqrt{x-1}=a\\\sqrt{x+1}=b\end{cases}}\) thì ta có hệ

\(\hept{\begin{cases}13a+9b=6\\b^2-a^2=2\end{cases}}\)

Rút cái thứ 2 thế vô cai thứ nhất rồi làm tiếp là ra. Phần còn lại đơn giản tự làm nhé

14 tháng 8 2017

bình phương 2 vế và giải như lớp 8

14 tháng 8 2017

nhưng cậu giải được phương trình bậc 4 chứ

17 tháng 6 2017

\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}=4-2x-x^2\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+14}+x^2+2x-4=0\)

\(\Leftrightarrow\sqrt{3x^2+6x+7}-2+\sqrt{5x^2+10x+14}-3+x^2+2x+1=0\)

\(\Leftrightarrow\frac{3x^2+6x+7-4}{\sqrt{3x^2+6x+7}+2}+\frac{5x^2+10x+14-9}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+14}+3}+\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1\right)=0\)

Dễ thấy: \(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+14}+3}+1>0\)

Nên (x+1)2=0 =>x+1=0 =>x=-1

17 tháng 6 2017

đề đâu

20 tháng 8 2017

câu này cậu dùng bunhia vt rồi sd cối là đc làm đc n bài nào rồi

14 tháng 9 2017

xin lỗi nhé,tại máy mình bị lỗi nên phải đánh tách  ra :

\(\Leftrightarrow\left(\sqrt{x^2+x+2}-\sqrt{2x+3}\right)^2+2x+3=0\)

Do \(\left(\sqrt{x^2+x+2}-\sqrt{2x+3}\right)\ge0\)nên \(2x+3\le0\)hay \(x\le\frac{-3}{2}\)

Mà Đk là \(x\ge\frac{-3}{2}\)

\(\Rightarrow x=\frac{-3}{2}\)

Thay lại thì \(x=\frac{-3}{2}\left(L\right)\)

\(\Rightarrow\)pt vô nghiệm

14 tháng 9 2017

Bài 2 phân tích cái trong căn. tách vế trái thành nt trong căn