Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sin\left(x+\frac{\pi}{6}\right)=-\frac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{6}=-\frac{\pi}{3}+k2\pi\\x+\frac{\pi}{6}=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{2}+k2\pi\\x=\frac{7\pi}{6}+k2\pi\end{matrix}\right.\)
Do \(x\in\left[0;2\pi\right]\Rightarrow\left[{}\begin{matrix}0\le-\frac{\pi}{2}+k2\pi\le2\pi\\0\le\frac{7\pi}{6}+k2\pi\le2\pi\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}k=1\\k=0\end{matrix}\right.\) \(\Rightarrow x=\left\{\frac{3\pi}{2};\frac{7\pi}{6}\right\}\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
c.
\(\Leftrightarrow cos\left(x-\frac{\pi}{3}\right)=\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{3}=\frac{\pi}{3}+k2\pi\\x-\frac{\pi}{3}=-\frac{\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2\pi}{3}+k2\pi\\x=k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{0;\frac{2\pi}{3}\right\}\)
d.
\(\Leftrightarrow cos^2x\left(cosx-2\right)=0\)
\(\Leftrightarrow cosx=0\)
\(\Leftrightarrow x=90^0+k180^0\)
\(\Rightarrow x=\left\{90^0;270^0;450^0;630^0\right\}\)
a.
\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k2\pi\\x=\frac{4\pi}{3}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{4\pi}{3};\frac{5\pi}{3}\right\}\)
b.
\(\Leftrightarrow sin2x=-\frac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=-30^0+k360^0\\2x=210^0+k360^0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-15^0+k180^0\\x=105^0+k180^0\end{matrix}\right.\)
Pt vô nghiệm trên khoảng đã cho
\(\Leftrightarrow2x+\frac{\pi}{3}=\frac{\pi}{2}+k\pi\)
\(\Leftrightarrow x=\frac{\pi}{12}+\frac{k\pi}{2}\)
Do \(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{\pi}{12}+\frac{k\pi}{2}\le2\pi\)
\(\Rightarrow-\frac{1}{6}\le k\le\frac{23}{6}\Rightarrow k=\left\{0;1;2;3\right\}\)
\(\Rightarrow x=\left\{\frac{\pi}{12};\frac{7\pi}{12};\frac{13\pi}{12};\frac{19\pi}{12}\right\}\)
\(\sqrt{3}sin2x-\left(1+cos2x\right)=m\)
\(\Leftrightarrow\frac{\sqrt{3}}{2}sin2x-\frac{1}{2}cos2x=\frac{m+1}{2}\)
\(\Leftrightarrow sin\left(2x-\frac{\pi}{6}\right)=\frac{m+1}{2}\)
Do \(x\in\left[\frac{\pi}{4};\frac{5\pi}{12}\right]\Rightarrow2x-\frac{\pi}{6}\in\left[\frac{\pi}{3};\frac{2\pi}{3}\right]\)
\(\Rightarrow sin\left(2x-\frac{\pi}{6}\right)\in\left[\frac{\sqrt{3}}{2};1\right]\)
Pt có nghiệm thuộc đoạn đã cho khi và chỉ khi: \(\frac{\sqrt{3}}{2}\le\frac{m+1}{2}\le1\)
\(\Leftrightarrow\sqrt{3}-1\le m\le1\)
\(\frac{tanx-1}{tanx+1}+cot2x=0\\ \Leftrightarrow cot2x-\frac{1-tanx\cdot tan\frac{\pi}{4}}{tanx+tan\frac{\pi}{4}}=0\\ \Leftrightarrow cot2x-cot\left(x+\frac{\pi}{4}\right)=0\)
d/
ĐKXĐ: \(\left\{{}\begin{matrix}sin2x\ne0\\tanx\ne-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ne\frac{k\pi}{2}\\x\ne-\frac{\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}+cot2x=0\\3tanx-\sqrt{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\frac{tanx-1}{tanx+1}-\frac{tan^2x-1}{2tanx}=0\\tanx=\frac{\sqrt{3}}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(tanx-1\right)\left(\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}\right)=0\left(1\right)\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)
Xét (1): \(\Leftrightarrow\left[{}\begin{matrix}tanx=1\Rightarrow x=\frac{\pi}{4}+k\pi\\\frac{1}{tanx+1}-\frac{tanx+1}{2tanx}=0\left(2\right)\end{matrix}\right.\)
Xét (2)
\(\Leftrightarrow\left(tanx+1\right)^2-2tanx=0\)
\(\Leftrightarrow tan^2x+1=0\left(vn\right)\)
1.
\(\Leftrightarrow2cos2x+\sqrt{2}.\frac{\sqrt{2}}{2}=0\)
\(\Leftrightarrow cos2x=-\frac{1}{2}\)
\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{3}+k\pi\\x=-\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{3};\frac{4\pi}{3};\frac{2\pi}{3};\frac{5\pi}{3}\right\}\)
2.
\(\Leftrightarrow sin4x-cos4x+sin4x+cos4x=\sqrt{6}\)
\(\Leftrightarrow2sin4x=\sqrt{6}\)
\(\Leftrightarrow sin4x=\frac{\sqrt{6}}{2}>1\)
Pt vô nghiệm
\(sin3x=0\Leftrightarrow3x=k\pi\)
\(\Leftrightarrow x=\frac{k\pi}{3}\)
Do \(x\in\left[0;2\pi\right]\Rightarrow0\le\frac{k\pi}{3}\le2\pi\Rightarrow0\le k\le6\)
\(\Rightarrow x=\left\{0;\frac{\pi}{3};\frac{2\pi}{3};\pi;\frac{4\pi}{3};\frac{5\pi}{3};2\pi\right\}\)
\(cos\left(x+\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\\x+\frac{\pi}{4}=-\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=-\pi+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi\right\}\)