Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{3-x}+\sqrt{2-x}=1\)
\(\Rightarrow\sqrt{3+x}=1-\sqrt{2-x}\)
\(\Rightarrow3+x=1-2\sqrt{2-x}+2-x\)
\(\Rightarrow2x+2\sqrt{2-x}=0\)
\(\Rightarrow x+\sqrt{2-x}=0\)
\(\Rightarrow2-x=\left(-x\right)^2\)
\(\Rightarrow2-x=x^2\)
\(\Rightarrow2-x^2-x=0\)
\(\Rightarrow x^2+x-2=0\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\x=1\end{cases}}}\)
Vậy....
\(a,\sqrt{2x+5}=\sqrt{1-x}\)
\(\Rightarrow2x+5=1-x\)
\(2x+x=1-5\)
\(3x=-4\Leftrightarrow x=\frac{-4}{3}\)
Vậy \(S=\left\{-\frac{4}{3}\right\}\)thuộc tập nghiệm của pt trên
Mấy bài này dài vật vã ghê =)))))))))))))
1, a, \(\frac{3+4\sqrt{3}}{\sqrt{6}+\sqrt{2}-\sqrt{5}}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}-\sqrt{5}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{\left(\sqrt{6}+\sqrt{2}\right)^2-5}\)
=\(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{8+4\sqrt{3}-5}\)
= \(\frac{\left(3+4\sqrt{3}\right)\left(\sqrt{6}+\sqrt{2}+\sqrt{5}\right)}{3+4\sqrt{3}}\)
=\(\sqrt{6}+\sqrt{2}+\sqrt{5}\)
b, M = \(\frac{\sqrt{3}\left(x-1\right)}{\sqrt{x^2}-x+1}\)(ĐKXĐ: \(x\ge0\))
= \(\frac{\sqrt{3}\left(x-1\right)}{x-x+1}\)
= \(\sqrt{3}\left(x-1\right)\)
Thay x = \(2+\sqrt{3}\)(TMĐK) vào M ta có:
M = \(\sqrt{3}\left(2+\sqrt{3}-1\right)=\sqrt{3}\left(1+\sqrt{3}\right)=3+\sqrt{3}\)
Vậy với x = \(2+\sqrt{3}\)thì M = \(3+\sqrt{3}\)
2, Mình chỉ giải câu a thôi nhé:
\(\sqrt{1+b}+\sqrt{1+c}\ge2\sqrt{1+a}\)
\(\Leftrightarrow\left(\sqrt{1+b}+\sqrt{1+c}\right)^2\ge\left(2\sqrt{1+a}\right)^2\)
\(\Leftrightarrow1+b+2\sqrt{\left(1+b\right)\left(1+c\right)}+1+c\ge4\left(1+a\right)\)
\(\Leftrightarrow2+b+c+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)\left(1\right)\)
Vì \(\left(\sqrt{1+b}-\sqrt{1+c}\right)^2\ge0\)
\(\Rightarrow2+b+c\ge2\sqrt{\left(1+b\right)\left(1+c\right)}\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow4+2\left(b+c\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\ge4\left(1+a\right)+2\sqrt{\left(1+b\right)\left(1+c\right)}\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4\left(1+a\right)\)
\(\Leftrightarrow4+2\left(b+c\right)\ge4+4a\)
\(\Leftrightarrow2\left(b+c\right)\ge4a\)
\(\Leftrightarrow b+c\ge2a\)
4*. Thật ra cái này mình xài làm trội, làm giảm là được mà
Đặt A = \(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+....+\frac{1}{2\sqrt{n}}\)
\(\frac{1}{2}A=\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+....+\frac{1}{\sqrt{n}+\sqrt{n}}\)
Ta có: \(\frac{1}{\sqrt{2}+\sqrt{2}}>\frac{1}{\sqrt{3}+\sqrt{2}}\)
\(\frac{1}{\sqrt{3}+\sqrt{3}}>\frac{1}{\sqrt{4}+\sqrt{3}}\)
+ .........................................................
\(\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{n+1}+\sqrt{n}}\)
Cộng tất cả vào
\(\Rightarrow\frac{1}{\sqrt{2}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{3}}+...+\frac{1}{\sqrt{n}+\sqrt{n}}>\frac{1}{\sqrt{3}+\sqrt{2}}+\frac{1}{\sqrt{4}+\sqrt{3}}+...+\frac{1}{\sqrt{n+1}+\sqrt{n}}\)\(\frac{1}{2}A>\frac{\sqrt{3}-\sqrt{2}}{3-2}+\frac{\sqrt{4}-\sqrt{3}}{4-3}+...+\frac{\sqrt{n+1}-\sqrt{n}}{n+1-n}\)
\(\frac{1}{2}A>\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{n+1}-\sqrt{n}\)
\(\frac{1}{2}A>\sqrt{n+1}-\sqrt{2}\)
\(A>2\sqrt{n+1}-2\sqrt{2}>2\sqrt{n+1}-3\)
\(A+1>2\sqrt{n+1}-3+1\)
\(A+1>2\sqrt{n+1}-2\)
\(A+1>2\left(\sqrt{n+1}-1\right)\)
Vậy ta có điều phải chứng minh.
Đk : ...
dễ thấy x = 0 không là nghiệm của pt
chia cả hai vế của pt cho \(\sqrt{x}\) ta có :
\(\frac{x+1+\sqrt{x^2-4x+1}}{\sqrt{x}}=3\)
<=> \(\sqrt{x}+\frac{1}{\sqrt{x}}+\sqrt{x-4+\frac{1}{x}}=3\)
Đặt \(\sqrt{x}+\frac{1}{\sqrt{x}}=t\) => \(x+\frac{1}{x}=t^2-2\)
pt <=> \(t+\sqrt{t^2-6}=3\)
giải tiếp nha
a) \(3\sqrt{x}-2\sqrt{9x}+\sqrt{16x}=5\)
\(\Leftrightarrow3\sqrt{x}-6\sqrt{x}+4\sqrt{x}=5\)
\(\Leftrightarrow\sqrt{x}=5\)
<=> x = 25
b) pt <=> \(\left(x^2+5\right)=\left(x+1\right)^2\)
<=> \(\left(x^2+5\right)=x^2+2x+1\)
<=> 2x = 4
<=> x = 2
c) pt <=> \(45-14\sqrt{x}+x=x-11\)
<=> \(45+11=14\sqrt{x}\)
<=> \(56=14\sqrt{x}\)
<=> \(4=\sqrt{x}\)
<=> x = 16
p/s : Cậu tự đặt điều kiện nhé
Điều kiện xác định của hệ: \(x\ge0,y\ge5.\)
Kí hiệu \(VT,VP\) tương ứng là vế trái và phải của phương trình thứ nhất.
Nếu \(x>y-5\to x+4>y-1,x+2>y-3\to VT>VP.\)
Nếu \(x<\)\(y-5\) thì tương tự \(VT<\)\(VP.\)
Vậy \(x=y-5.\)
Thay vào phương trình thứ hai cho ta
\(\left(y-5\right)^2+y^2+\left(y-5\right)+y=44\Leftrightarrow2y^2-8y-24=0\to y^2-4y-12=0\to\)
\(\to\left(y-6\right)\left(y+2\right)=0\to y=-2,6.\) Vì \(y\ge5\to y=6\to x=1.\)
Vậy nghiệm của hệ là \(\left(x,y\right)=\left(1,6\right).\)
Lời giải:
ĐKXĐ: $0\leq x\leq 1$
PT $\Leftrightarrow \sqrt{x+\sqrt{1-x}}=1-\sqrt{x}$
$\Rightarrow x+\sqrt{1-x}=(1-\sqrt{x})^2=x+1-2\sqrt{x}$
$\Leftrightarrow 2\sqrt{x}+\sqrt{1-x}-1=0$
$\Leftrightarrow 2\sqrt{x}+\frac{-x}{\sqrt{1-x}+1}=0$
$\Leftrightarrow \sqrt{x}(2-\frac{\sqrt{x}}{\sqrt{1-x}+1})=0$
$\Rightarrow x=0$ hoặc $2-\frac{\sqrt{x}}{\sqrt{1-x}+1}=0$
Nếu $2-\frac{\sqrt{x}}{\sqrt{1-x}+1}=0$
$\Rightarrow 2\sqrt{1-x}+2=\sqrt{x}$. Điều này vô lý vì $\sqrt{x}\leq 1$ với mọi $0\leq x\leq 1$ trong khi $2\sqrt{1-x}+2\geq 2$
Vậy $x=0$ là nghiệm duy nhất.