K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2017

Đặt \(t=\sqrt[4]{x^2+32}\ge0\)

\(\Rightarrow\sqrt{x^2+32}=t^2\)

pt trên đc viết lại thành

\(t^2-2t-3=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=3\\t=-1\end{matrix}\right.\)

\(t\ge0\) nên t=3

\(\Rightarrow\sqrt[4]{x^2+32}=3\)

\(\Leftrightarrow x^2+32=3^4\)

\(\Leftrightarrow\left[{}\begin{matrix}x=7\\x=-7\end{matrix}\right.\)

Thử lại thỏa mãn

6 tháng 6 2018

@Akai Haruma , @phynit giải dùm em vs ạ

23 tháng 7 2020

Cộng 2 phương trình lại 
VT có:\(\sqrt{x}+\sqrt{32-x}\le8;\sqrt[4]{x}+\sqrt[4]{32-x}\le4\) nên VT\(\le\)12
VP có:\(y^2-6y+21=\left(y-3\right)^2+12\ge12\)
Nghiệm \(x=16;y=3\)

23 tháng 7 2020

điều kiện: 0=<x =< 32

hệ đã cho tương đương với: \(\hept{\begin{cases}\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)=y^2-6y+21\\\sqrt{x}+\sqrt[4]{32-x}=y^2-3\end{cases}}\)

theo bất đẳng thức Bunhiacopsky ta có:

\(\left(\sqrt{x}+\sqrt{32-x}\right)^2\le\left(1^2+1^2\right)\left(x+32-x\right)=64\)

\(\Rightarrow\sqrt{x}+\sqrt{32-x}\le8\)

\(\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)^4\le\left[2\left(\sqrt{x}+\sqrt{32-x}\right)\right]^2\le256\Rightarrow\sqrt[4]{x}+\sqrt[4]{32-x}\le4\)

\(\Rightarrow\left(\sqrt{x}+\sqrt{32-x}\right)+\left(\sqrt[4]{x}+\sqrt[4]{32-x}\right)\le12\)

mặt khác \(y^2-6y+21=\left(y-3\right)^2+12\ge12\)

đẳng thức xảy ra khi x=16 và y=3 (tm)

3 tháng 1 2021

1.

\(\sqrt{50}-3\sqrt{8}+\sqrt{32}=5\sqrt{2}-6\sqrt{2}+4\sqrt{2}=3\sqrt{2}\)

2. 

a, ĐK: \(x\in R\)

\(pt\Leftrightarrow\sqrt{\left(x-2\right)^2}=1\)

\(\Leftrightarrow\left|x-2\right|=1\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=1\\x-2=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=1\end{matrix}\right.\)

b, ĐK: \(x\ge3\)

\(pt\Leftrightarrow\sqrt{x-3}\left(\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}=0\\\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=1\left(l\right)\end{matrix}\right.\)

31 tháng 7 2018

\(x^2=8-2\sqrt{2+\sqrt{3}}-2\sqrt{3.\left(2-\sqrt{3}\right)}\)

\(\Leftrightarrow8-x^2=2\sqrt{2+\sqrt{3}}+2\sqrt{3.\left(2-\sqrt{3}\right)}\)

\(\Leftrightarrow x^4-16x^2+64=4\left(2+\sqrt{3}+6-3\sqrt{3}+2\sqrt{3}\right)\)

\(\Leftrightarrow x^4-16x^2+64=32\)

\(\Leftrightarrow x^4-16x^2+32=0\)

Vậy có điều phải chứng minh.

NV
23 tháng 12 2022

Cộng vế:

\(\sqrt{x}+\sqrt[]{32-x}+\sqrt[4]{x}+\sqrt[4]{32-x}=y^2-6y+21\)

\(\Leftrightarrow\sqrt[]{x}+\sqrt[]{32-x}+\sqrt[4]{x}+\sqrt[4]{32-x}=\left(y-3\right)^2+12\)

Ta có:

\(\sqrt{x}+\sqrt[]{32-x}\le\sqrt{2\left(x+32-x\right)}=8\)

\(\sqrt[4]{x}+\sqrt[4]{32-x}\le\sqrt{2\left(\sqrt[]{x}+\sqrt[]{32-x}\right)}\le\sqrt{2.8}=4\)

\(\Rightarrow\left\{{}\begin{matrix}\sqrt[]{x}+\sqrt[]{32-x}+\sqrt[4]{x}+\sqrt[4]{32-x}\le12\\\left(y-3\right)^2+12\ge12\end{matrix}\right.\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x=32-x\\y=3\end{matrix}\right.\)