Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Xét riêng 2 căn lớn đầu tiên
Bình phương, thu gọn được căn(12-8 căn 2)
Giờ kết hợp kết quả này với căn lớn còn lại
Tiếp tục bình phương, thu gọn là xong
\(\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)\)
\(=\frac{\sqrt{2}\left(\sqrt{5+\sqrt{21}}+\sqrt{5-\sqrt{21}}\right)}{\sqrt{2}}\)
\(=\frac{\sqrt{10+2\sqrt{21}}+\sqrt{10-2\sqrt{21}}}{\sqrt{2}}\)
\(=\frac{\sqrt{3+2\sqrt{3.7}+7}+\sqrt{3-2\sqrt{3.7}+7}}{\sqrt{2}}\)
\(=\frac{\sqrt{\left(\sqrt{3}-\sqrt{7}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{7}\right)^2}}{\sqrt{2}}\)
\(=\frac{|\sqrt{3}-\sqrt{7}|+|\sqrt{3}+\sqrt{7}|}{\sqrt{2}}\)
\(=\frac{-\sqrt{3}+\sqrt{7}+\sqrt{3}+\sqrt{7}}{\sqrt{2}}\)
\(=\frac{2\sqrt{7}}{\sqrt{2}}\)
\(=\sqrt{14}\)
+) Ta có: \(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow4\sqrt{3x}+2\sqrt{3x}=3\sqrt{3x}+6\)
\(\Leftrightarrow3\sqrt{3x}=6\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
\(\Leftrightarrow x=\frac{4}{3}\left(TM\right)\)
Vậy \(S=\left\{\frac{4}{3}\right\}\)
+) Ta có:\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) \(\left(ĐK:x\ge1\right)\)
\(\Leftrightarrow\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
\(\Leftrightarrow\sqrt{x-1}.\left(\sqrt{x+1}-4\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\\sqrt{x+1}=4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=1\left(TM\right)\\x=15\left(TM\right)\end{cases}}\)
Vậy \(S=\left\{1,15\right\}\)
+) Ta có: \(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) \(\left(ĐK:x\ge0\right)\)
\(\Leftrightarrow\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
\(\Leftrightarrow\frac{2.\left(\sqrt{x}-2\right)-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
\(\Leftrightarrow\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Để \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)mà \(4\sqrt{x}\ge0\forall x\)
\(\Rightarrow\)\(\sqrt{x}-4< 0\)
\(\Leftrightarrow\)\(\sqrt{x}< 4\)
\(\Leftrightarrow\)\(x< 16\)
Kết hợp ĐKXĐ \(\Rightarrow\)\(0\le x< 16\)
Vậy \(S=\left\{\forall x\inℝ/0\le x< 16\right\}\)
\(4\sqrt{3x}+\sqrt{12x}=\sqrt{27x}+6\) (Đk: x \(\ge\)0)
<=> \(4\sqrt{3x}+2\sqrt{3x}-3\sqrt{3x}=6\)
<=> \(3\sqrt{3x}=6\)
<=> \(\sqrt{3x}=2\)
<=> \(3x=4\)
<=> \(x=\frac{4}{3}\)
\(\sqrt{x^2-1}-4\sqrt{x-1}=0\) (đk: x \(\ge\)1)
<=> \(\sqrt{x-1}.\sqrt{x+1}-4\sqrt{x-1}=0\)
<=> \(\sqrt{x-1}\left(\sqrt{x+1}-4\right)=0\)
<=> \(\orbr{\begin{cases}\sqrt{x-1}=0\\\sqrt{x+1}-4=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x-1=0\\x+1=16\end{cases}}\)
<=> \(\orbr{\begin{cases}x=1\\x=15\end{cases}}\)(tm)
\(\frac{\sqrt{x}-2}{2\sqrt{x}}< \frac{1}{4}\) (Đk: x > 0)
<=> \(\frac{\sqrt{x}-2}{2\sqrt{x}}-\frac{1}{4}< 0\)
<=>\(\frac{2\sqrt{x}-4-\sqrt{x}}{4\sqrt{x}}< 0\)
<=> \(\frac{\sqrt{x}-4}{4\sqrt{x}}< 0\)
Do \(4\sqrt{x}>0\) => \(\sqrt{x}-4< 0\)
<=> \(\sqrt{x}< 4\) <=> \(x< 16\)
Kết hợp với đk => S = {x|0 < x < 16}
giải pt
\(|4x-1|\)\(\sqrt{x^2+1}\)=2\(x^2\) -2x+2
\(\sqrt{\frac{1}{x+3}}\)+\(\sqrt{\frac{5}{x+4}}\) =4
a,\(\Leftrightarrow\left(4x-1\right)^2\left(x^2+1\right)=4\left(x^2-x+1\right)^2\)
\(\Leftrightarrow\left(16x^2-8x+1\right)\left(x^2+1\right)=4\left(x^4+x^2+1-2x^3+2x^2-2x\right)\)
\(\Leftrightarrow16x^4+17x^2-8x^3-8x+1=4x^4+12x^2+4-8x^3-8x\)
\(\Leftrightarrow12x^4+5x^2-3=0\left(1\right)\)
Dat \(x^2=t\left(t\ge0\right)\)
\(\left(1\right)\Leftrightarrow12t^2+5t-3=0\)
\(\Delta=25-4.12.\left(-3\right)=169>0\)
Suy ra PT co hai nghiem phan biet
\(t_1=\frac{1}{3};t_2=-\frac{3}{4}\)
\(x=\frac{1}{\sqrt{3}}\)
2/ x2 - 6x + 4 + \(2\sqrt{2x-1}\)= 0
<=> (x2 - 4x + 4) - (2x - 1 - \(2\sqrt{2x-1}\)+1) = 0
<=> (x - 2)2 - (1 - \(\sqrt{2x-1}\))2 = 0
\(\Leftrightarrow\left(x-1-\sqrt{2x-1}\right)\left(x-3+\sqrt{2x-1}\right)=0\)
Làm tiếp nhé
a, \(P=\frac{x-4}{\sqrt{x}\left(\sqrt{x-2}\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}.\frac{\sqrt{x}+2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+2}{x-2\sqrt{x}}\)
b. Với \(x=4+2\sqrt{3}\Rightarrow P=\frac{\sqrt{4+2\sqrt{3}}+2}{4+2\sqrt{3}-2\sqrt{4+2\sqrt{3}}}\)
\(=\frac{\sqrt{3}+1+2}{4+2\sqrt{3}-2\left(\sqrt{3}+1\right)}=\frac{3+\sqrt{3}}{2}\)
C. \(P>0\Rightarrow\frac{\sqrt{x}+2}{x-2\sqrt{x}}>0\Rightarrow x-2\sqrt{x}>0\Rightarrow x>4\)
1) đk: \(x\ge1\)
Ta có: \(\sqrt{x-1}-\sqrt{2x\left(x-1\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}=\sqrt{2x\left(x-1\right)}\)
\(\Leftrightarrow x-1=2x^2-2x\)
\(\Leftrightarrow2x^2-3x+1=0\)
\(\Leftrightarrow\left(2x^2-2x\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\left(ktm\right)\\x=1\left(tm\right)\end{cases}}\)
Vậy x = 1
2) đk: \(x\ge\frac{1}{2}\)
Ta có: \(\sqrt{5x^2}=2x-1\)
\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)
\(\Leftrightarrow5x^2=4x^2-4x+1\)
\(\Leftrightarrow x^2+4x-1=0\)
\(\Leftrightarrow\left(x+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+2-\sqrt{5}\right)\left(x+2+\sqrt{5}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-2+\sqrt{5}\left(ktm\right)\\x=-2-\sqrt{5}\left(ktm\right)\end{cases}}\)
=> PT vô nghiệm
3) đk: \(x\ge-1\)
Ta có: \(\sqrt{x+1}+\sqrt{9x+9}=4\)
\(\Leftrightarrow\sqrt{x+1}+3\sqrt{x+1}=4\)
\(\Leftrightarrow4\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=1\)
\(\Rightarrow x=0\)
4) đk: \(x\ge2\)
Ta có: \(\sqrt{x-2}-\sqrt{x\left(x-2\right)}=0\)
\(\Leftrightarrow\sqrt{x-2}=\sqrt{x\left(x-2\right)}\)
\(\Leftrightarrow x-2=x\left(x-2\right)\)
\(\Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=1\left(ktm\right)\\x=2\left(tm\right)\end{cases}}\)
Vậy x = 2
6) đk: \(x\ge-\frac{7}{5}\)
Ta có: \(\frac{\sqrt{2x-3}}{\sqrt{x-1}}=2\)
\(\Leftrightarrow\frac{2x-3}{x-1}=2\)
\(\Leftrightarrow2x-3=2x-2\)
\(\Leftrightarrow0x=1\) vô lý
=> PT vô nghiệm
Đk: \(x\ne\)2; x \(\ne\)-4; -4 \(\le\)x \(\le\)2
Đặt \(\sqrt{\frac{2-x}{x+4}}=a\) (đk: \(a\ge\)0) => \(\sqrt{\frac{x+4}{2-x}}=\frac{1}{a}\)
Do đó, ta có: \(a-\frac{2}{a}+1=0\)
=> a2 + a - 2 = 0
<=> a2 + 2a - a - 2 = 0
<=> (a + 2)(a - 1) = 0
<=> \(\orbr{\begin{cases}a=-2\left(loại\right)\\a=1\end{cases}}\)
<=> \(\sqrt{\frac{2-x}{x+4}}=1\)
<=> \(2-x=x+4\)
<=> \(2x=-2\) <=> x = -1 (tm)
Vậy S = {-1}