![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
c) x^2 -x-20=0
\(\Leftrightarrow x^2-5x+4x-20=0\)
\(\Leftrightarrow\left(x^2+4x\right)-\left(5x+20\right)=0\)
\(\Leftrightarrow x\left(x+4\right)-5\left(x+4\right)=0\)
\(\Leftrightarrow\left(x+4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+4=0\\x-5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=5\end{matrix}\right.\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì VT không âm nên VP không âm => 12x ≥ 0 <=> x ≥ 0
Với x ≥ 0 pt <=> x + 1 + 2x + 1 + 3x + 5 + 5x + 2 = 12x
<=> 11x + 9 = 12x
<=> -x = -9 <=> x = 9 (tm)
Vậy x = 9
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left|x+9\right|+\left|x-4\right|=13\)
Ta xét 3 trường hợp:
+) TH1: \(x< -9\):
\(-x-9-x+4=13\)
\(\Leftrightarrow-2x=18\)
\(\Leftrightarrow x=-9\) (loại)
+) TH2: \(-9\le x< 4\):
\(x+9-x+4=13\)
\(\Leftrightarrow0x=0\) (luôn đúng)
+) TH3:\(x\ge4\):
\(x+9+x-4=13\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=4\left(TM\right)\)
Ta có:\(\left|x+9\right|+\left|x-4\right|=\left|x+9\right|+\left|4-x\right|\ge\left|x+9+4-x\right|=13\)
\(\Rightarrow\left|x+9\right|+\left|x-4\right|=13\Leftrightarrow\left(x+9\right)\left(4-x\right)\ge0\)
\(\Leftrightarrow-9\le x\le4\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2-3x+2+|x-1|=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)+|x-1|=0\left(1\right)\)
-TH1: x-1 \(\ge0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x=1\)
\(-TH_2:x-1< 0\)
\(\left(1\right)\Leftrightarrow\left(x-1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow x=1\)
\(x=3\)